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Greenhouse farming is often limited by unstable environmental conditions and 

inefficient manual control methods. The paper designs an Artificial Intelligence 

Event-Triggered Control System (AIETCS) of real-time monitoring and prediction 

of greenhouse conditions using an Artificial Neural Network (ANN). A simulation 

based, quantitative methodology was embraced. Important environmental 

parameters were defined in terms of temperature, relative humidity, soil moisture, 

photo synthetically active radiation (PAR) and soil nutrients, between rainy and 
Harmattan seasons (2021-2024). Hardware interactions were modelled using 

Proteus simulation and data were pre-processed then used to train the ANN. The 

ANN was used to predict short-term greenhouse conditions and the event-triggered 

logic only used actuators when they were above their thresholds. Results show the 

ANN achieved high predictive accuracy (validation loss = 2.0761e-04, MAE = 

0.028, R2=0.97R^2 = 0.97R2=0.97). Compared to baseline conditions, where 

deviations from ideal values reached 58% (soil moisture) and 39% (humidity), the 

AIETCS consistently reduced deviations to below 3.5% across all variables. The 

findings demonstrate that ANN-driven event-triggered control improves greenhouse 

stability, reduces resource wastage, and provides a scalable framework for precision 

agriculture in resource-constrained settings. 
Keywords: Artificial Neural Network; Event-Triggered Control; Greenhouse Monitoring; Precision Agriculture 

 

1. INTRODUCTION  

Falana et al. (2024) define a greenhouse as a building surrounded with an objective of cultivating crops. It is meant 

to shield plants against poor climatic conditions and it generally comprises of frames composed of transparent 
substances like glass and polyethylene. The development of greenhouse farming, as well as other methods of 

controlled environment, has been designed to generate viable micro-climates to allow crops to grow all year round 

or during certain seasons (Maraveas et al., 2023). These technologies are also essential to produce vegetables, 

ornamentals, and high-value food crops in cold climates in the off-season when outdoor production is not feasible 

(Abou-Mehdi-Hassani et al., 2022). 

In the world, countries are having difficulties to sustain the increasing food needs of its citizens. This crisis 

highlights the economic necessity to reconcile the population growth to the food security. The food production and 

quality enhancement requires modern technologies and precision agriculture techniques including greenhouse 

farming (Abdeen, 2024). To them, the implementation of electronic information systems in greenhouse farms can be 

used to create profound improvements in year-round production of food and positively affect the economies of 

nations (Kumar et al., 2022). Such systems are able to observe and regulate temperature, humidity, and light 
intensity to provide all the best conditions in growing crops (Singh et al., 2021). 

Glasshouses or greenhouses are climate-controlled facilities that are available throughout the year to grow sensitive 

or out of season plants. They are classified according to shape, and such types as Gable, Flat arch, Raised dome, 

Sawtooth, Skillion, and Tunnel (Abdulquadri, 2023). The main role of these buildings is to protect crops against 

unfavorable factors like high or low temperatures, wind, hail, rain, snow, pests and diseases (Zhang et al., 2020). It 

is important to make sure that the greenhouses have optimal natural light intensity to produce crops more efficiently 

(Chen et al., 2023). 

Conventionally used control of humidity, light, and temperature are not always effective. The manual observation of 

climate in human senses is not practical even to maintain climate 24/7, which creates demands on smart greenhouse 

technologies and electronic control systems (Bhatt, 2021). These challenges can be solved by creating cost-effective 

greenhouses that have features such as shading, air circulation by use of treated nets, and pests (Rahman et al., 
2022). The process of climate control can be automated by smart systems that enhance efficiency and lead to less 

reliance on labor (Ghosh et al., 2023). 
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The previous greenhouse surveillance systems were based on wired sensor networks which added cablings and 

hampered farm operations. The wireless sensor networks (WSNs) have been used to handle such a problem, 

allowing mobility and decreasing clutter (Patel et al., 2021). WSNs together with machine learning make climatic 

monitoring in real-time without people (Lee et al., 2020). The technologies help to make communication between 

sensors and control units smooth to enhance the management of greenhouses (Al-Turjman et al., 2023). 
In far off greenhouse areas, important climate activities can be forgotten as there will be no human supervision. 

Such activities as irrigation and light control should be automated and can be performed with the help of event-

triggered approaches (ETA) (Rani et al., 2021). Actuators can be activated by controllers coded to act on WSN data 

depending on the particular climate needs related to the crop (Sharma et al., 2022). Implementation can become a 

complicated task; however with lower cost and dependable systems, this technology can be affordable to farmers 

(Mishra et al., 2023). 

In Nigeria, farmer reluctance to invest in greenhouse agriculture stems from high setup costs, lack of expertise, and 

uncertainty about outcomes. A survey by Maisha Mazuri Consultancy (2023) revealed that over 83.25% of farmers 

practicing protected agriculture do not utilize greenhouse technology. This issue demands urgent attention, 

especially given Nigeria’s economic challenges. Increased research and innovation, supported by universities and 

government initiatives, can promote awareness and adoption of modern agricultural practices (Okafor et al., 2024). 

2. RESEARCH METHODOLOGY 
Quantitative and simulation approach is the methodology that is adopted in this study. It was used to fulfill the study 

objective through the integration of system characterization, intelligent control system design, artificial intelligence 

integration, and validation through simulation. This approach starts with the description of greenhouse farming 

systems so as to learn the basic environmental variables that determine crop yield. Parameters of interest will be 

temperature, humidity, soil moisture and light intensity that will be investigated using both secondary data sources 

found in literature as well as primary data sources like existing greenhouse setups. It will be followed by the creation 

of an intelligent event-driven control system that will allow real-time monitoring and automatic reaction to any 

changes in the greenhouse environment. The predictive models will be constructed using a machine learning 

approach that will be able to learn on historical data and therefore spot anomalies or critical thresholds. The control 

logic will be programmed to take certain measures like irrigation, ventilation, or lighting modifications once the 

non-conformity to the ideal conditions is detected. The methodology also includes the design and development of a 
green house monitoring and control system based on artificial intelligence. To be implemented, the system will be 

modeled and tested on the Proteus software to simulate the hardware of sensor, microcontrollers, and actuators and 

Python programming language will be used to implement algorithms, data analysis, and machine learning. The 

simulation tools help make it cost-effective, allow testing a variety of scenarios, and verify it prior to physical 

implementation. Lastly, analysis of performance will be done by simulation experiments. The system would be put 

through different conditions of the environment. To confirm the success of the proposed AI-based greenhouse 

control system, the experimental results will be compared with the measurements of the baseline values at the 

beginning of the system characterization. 

2.2 Data Acquisition 

Data of the greenhouse condition was collected using the setup in figure 3.2. The plants considered are pepper and 

tomatoes. To account for temporal variability, measurements were taken at one hour intervals each day for 24 hours. 

Seasonal variations were captured by conducting data collection campaigns during both the dry season (harmattan, 
November–February) and the rainy season (April–July). The year of data collection is 2023- 2024.  After the data 

collection, the overall daily hourly average of the environmental condition across season was compared with the 

ideal data and then used for analysis. Alongside environmental and soil data, crop growth parameters such as plant 

height, leaf area, flowering time, and yield per plant were recorded. Plant height was measured with a meter rule, 

leaf area was estimated using a leaf area meter, and yield was quantified using a digital weighing balance. The 

selection of these parameters and instruments was guided by their relevance to the physiology of tomato and pepper 

crops. By considering seasonal variations, the data collection framework ensured a very good characterization of the 

greenhouse farm. The collected data are reported in Table 1 and 2. 

Table 1: Overall average daily hourly greenhouse condition for Hamathan Season 

Timestamp (GMT) 
Houly 

Temperature_0C Humidity_% Soil_Moisture_% PAR_umol_m2_s 

0:01 20.35 45.15 27.37 147 

1:00 21.63 42.79 30.05 152 

2:00 26.39 55.39 12.8 127 
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3:00 21.51 40.68 17.88 144 

4:00 20.42 59.13 14.87 155 

5:00 18.7 34.66 24.97 164 

6:00 20.66 55.24 26.61 132 

7:00 18.87 47.38 25.86 74 

8:00 22.79 56.42 27.3 87 

9:00 24.16 45.82 29.44 154 

10:00 22.63 45.97 20.52 104 

11:00 18.63 48.13 31.78 123 

12:00 19.2 47.84 21.93 263 

13:00 21.16 25.81 30.21 128 

14:00 24.62 62.87 33.11 189 

15:00 24.69 49.15 26.64 161 

16:00 20.97 47.51 23.36 107 

17:00 23.38 52.74 23.54 258 

18:00 18.71 49.15 21.67 149 

19:00 17.62 42.58 24.63 119 

20:00 21.81 43.45 24.6 148 

21:00 25.2 43.4 24.96 138 

22:00 18.03 33.32 24.31 110 

23:00 22.65 30.09 22.17 097 

AVG  21.44917 46.02792 24.6075 142.9167 

Ideal  25.99979 74.99872 58.66571 193.1798 

Deviation (%) 17.50 38.66 58.06 26.05 

Table 1 presents the results of the greenhouse condition characterized considering temperature, humidity, light, and 

soil pH as the main environmental variables. From the results, it was observed that the average overall temperature 
at the testbed is 21.44917 °C, which is about 17.5% lower than the ideal benchmark value of 25.99979 °C. 

Similarly, the average humidity was 46.02792%, representing a deviation of approximately 38.6% from the required 

74.99872%. Soil moisture also averaged 24.6075%, which is about 58.1% below the optimal 58.66571%. In terms 

of PAR, the greenhouse recorded 142.9167 µmol/m²/s, about 26.0% lower than the ideal value of 193.1798 

µmol/m²/s. These significant deviations highlight that the prevailing microclimatic conditions are far from optimal 

for sustaining healthy tomato and pepper plant growth and productivity. The current manual monitoring methods at 

the farm are inadequate for capturing such fluctuations in real time, especially when multiple variables interact 

dynamically. Therefore, the findings underscore the critical need for an intelligent greenhouse monitoring and 

control system driven by Artificial Intelligence. Table 2 presents the overall average daily hourly greenhouse 

condition for rainy season. 

Table 2: Overall average daily hourly greenhouse condition for Rainy Season 

Timestamp 
(GMT) Hourly 

Temperature_0C Humidity_% Soil_Moisture_% PAR_umol_m2_s 

0:01 28.02 67.91 38.2 136 

1:00 29.28 75.84 57.36 116 

2:00 20.36 55.5 36.15 120 

3:00 23.79 70.06 57.51 148 

4:00 29.02 55.82 30.91 120 



                                                          International Journal of Artificial Intelligence Trends (IJAIT) 

 

Vol. 4, Issue X; No. 59, October, 2025, pp. 619-631 

 

622 

5:00 22.67 53.39 45.23 227 

6:00 27.91 88.61 60.09 216 

7:00 26.08 70.66 53.72 053 

8:00 24.55 76.96 52.64 118 

9:00 24.29 66.97 37.98 177 

10:00 26.49 71.9 49.61 132 

11:00 28.64 60.57 47.43 103 

12:00 32.03 71.41 30.85 162 

13:00 25.77 75.29 39.47 134 

14:00 24.6 58.89 44.59 149 

15:00 27.3 71.46 41.29 277 

16:00 26.48 69 43.37 154 

17:00 23.79 50.63 41.16 198 

18:00 26.49 71.02 35.95 160 

19:00 29.36 61.09 36.5 106 

20:00 29.78 54.37 40.77 149 

21:00 25.33 59.36 47.46 180 

22:00 26.51 80.18 66.31 171 

23:00 33.52 79.4 49.41 133 

AVG  26.7525 67.34542 45.165 151.625 

ideal 25.99979 74.99872 58.66571 193.1798 

Deviation (%) 2.90 10.20 22.99 21.51 

 

The analysis of the rainy season greenhouse conditions in Table 2 reveals that the average temperature recorded was 

26.75 °C, which is slightly higher than the ideal benchmark of 25.99 °C, giving a deviation of about 2.90%. This 

indicates that the temperature levels are within an acceptable range for plant growth, although minor fluctuations 
may still impact temperature-sensitive crops. The average relative humidity was 67.35%, which is lower than the 

ideal 74.99%, showing a 10.20% deviation. While the value falls within a moderately suitable range, the reduction 

in humidity could lead to increased evapotranspiration and stress for crops requiring high moisture content. 

Soil moisture during the rainy season averaged 45.17%, against the recommended 58.67%, representing a significant 

22.99% shortfall. Despite rainfall, this suggests that water distribution within the greenhouse soil was uneven, which 

may affect root water uptake and overall plant physiology. For PAR, the greenhouse recorded 151.63 µmol/m²/s, 

compared to the ideal 193.18 µmol/m²/s, translating to a 21.51% deficit. This reduced light intensity, common 

during cloudy and rainy periods, could negatively affect photosynthesis efficiency and crop productivity.In 

summary, while temperature levels during the rainy season are relatively close to the ideal, the considerable 

deviations in soil moisture, humidity, and light intensity highlight the challenges of maintaining optimal 

microclimatic conditions. These findings emphasize the necessity of deploying an AI-driven intelligent monitoring 

and control system capable of dynamically regulating irrigation, ventilation, and supplemental lighting. Such a 
system would ensure that even during periods of environmental variability, the greenhouse maintains stable and 

crop-friendly conditions for improved yield and resource efficiency. 

3. DEVELOPMENT OF THE INTELLIGENT EVENT TRIGGERING CONTROL SYSTEM FOR REAL-

TIME MONITORING AND PREDICTION OF GREENHOUSE CONDITION USING ANN 
The intelligent event-triggering control system is designed for monitoring and prediction of dynamic changes in 

greenhouse conditions in real time. Its development is based on the integration of an Artificial Neural Network 

(ANN) model for prediction, and generation of control actions. The following subsections describe the development 

stages in detail. 
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3.1 ANN Model Design 
The ANN model was structured to capture the nonlinear relationships between environmental parameters and 

greenhouse events. The input layer consisted of sensor data representing temperature, humidity, soil pH, light 

intensity, and soil moisture. The hidden layers employed nonlinear activation functions (ReLU and Sigmoid) to 

learn complex interactions between these variables. The output layer generated classification results corresponding 

to environmental condition in the farm. The mathematical model of ANN neuron is presented as Algorithm 1 

Algorithm 1: Python code of the ANN model 
import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

# Define ANN model 

model = keras.Sequential([ 

    layers.Dense(64, activation='relu', input_shape=(X_train.shape[1],)), 

    layers.Dense(32, activation='relu'), 

    layers.Dense(1)  # regression output 

]) 

# Compile 

model.compile(optimizer='adam', loss='mse', metrics=['mae']) 

# Train 

history = model.fit(X_train, y_train, 

                    validation_data=(X_test, y_test), 

                    epochs=50, batch_size=32, verbose=1) 

3.2 Training Dataset and Preparation 

The training dataset was collected from the testbed considering the period of 2020 to 2024 with daily information 

that characterized the greenhouse. The sample size of the data collected is 35064 records for tomato and pepper 

plants. Each record consisted of input features (environmental variables) and labeled outputs (control events). Data 

augmentation and normalization were applied to improve generalization and prevent bias from uneven event 

distributions using synthetic monitoring over sampling approach. The dataset was divided into training (70%), 
validation (15%), and testing (15%) subsets for effective model development. Algorithm 2 presents sample results of 

training python code of the proposed model. 

Algorithm 2: Codes of the data importation and preparation  

from google.colab import files 

import pandas as pd 

 

# Upload CSV file 

uploaded = files.upload() 

 

# Load into pandas DataFrame 

file_name = list(uploaded.keys())[0]   # get uploaded filename 

df = pd.read_csv(file_name) 

 

print("Data shape:", df.shape) 

print("Columns:", df.columns.tolist()) 

 

# Preview 

df.head() 

Data preparation codes 
from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

 

# Noramlization and augmentation 

X = df[["temperature_C", "relative_humidity_pct", "PAR_umol_m2_s", 

"N_pct"]] 

y = df["daily_yield_kg"] 



                                                          International Journal of Artificial Intelligence Trends (IJAIT) 

 

Vol. 4, Issue X; No. 59, October, 2025, pp. 619-631 

 

624 

 

# Split dataset 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 

random_state=42) 

 

# Scale features for ANN 

scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train) 

X_test = scaler.transform(X_test) 

 

3.3 ANN Training and greenhouse condition prediction model generation 

Model training was conducted using the backpropagation algorithm with an adaptive learning rate optimizer 

(Adam). The loss function used was categorical cross-entropy, suitable for multi-class event prediction. Early 

stopping and dropout techniques were incorporated to prevent over fitting and ensure generalization across unseen 

data. Performance metrics such as mean square error, loss and accuracy were used to evaluate the model’s predictive 
ability. Once the ANN was trained, a greenhouse condition prediction model was generated. This control model 

established a closed-loop system where real-time sensor data was continuously fed to the ANN, and actuator 

responses were automatically executed without human intervention. Model validation involved comparing ANN-

predicted events with actual environmental conditions and control responses. Performance was benchmarked against 

ideal data collected to demonstrate improvements in efficiency, adaptability, and resource conservation. Figure 1 

presents flow chart of the greenhouse condition prediction model. 

 
Figure 1: Flowchart of the greenhouse condition prediction model 

4. RESULT OF TRAINING DATA ANALYSIS 

Historical data of the testbed was collected over four years, 2021 to 2024 and the reason as to train neural network 

and generate greenhouse condition prediction model. The collected data was analyzed across using diagonal plots in 

Figure 2. 
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Figure 2: Diagonal and off diagonal scatter plots of the greenhouse data  

This plot in Figure 2 shows the pairwise relationships among the main variables: temperature (°C), relative humidity 
(%), PAR (µmol/m²/s), N content (%), and daily yield (kg). The plot gives the distribution of each variable 

individually. For example, temperature shows a multi-modal distribution, meaning the greenhouse experienced 

different operating temperature ranges which is due to seasonal variations). Similarly, humidity has two clear 

clusters, indicating dry and wet periods. This clustering is important because plants respond differently in these 

ranges, and AI-based monitoring can learn seasonal patterns for better prediction. 

The Off-diagonal scatter plots reveal correlations among variables in the dataset. For instance, temperature and 

humidity show a strong negative relationship as temperature increases, humidity tends to drop. This is a well-known 

greenhouse challenge, since higher temperature drives evapotranspiration and reduces relative humidity, stressing 

crops. Similarly, PAR vs. yield shows scattered low yield values, suggesting that even under good light, yield does 

not always increase and the reason was due to limiting factors like soil moisture or nutrient deficiencies. 

This matrix reveals that no single factor determines yield rather, yield emerges from the complex interaction of 

temperature, humidity, soil moisture, and nutrient availability. Figure 3 presents the correlation heatmap. The figure 
maps out the relationships between all greenhouse parameters, with each square showing how strongly two factors 

are related, with red meaning strong positive correlation and blue meaning strong negative correlation. The diagonal 

matrix value of 1 indicates that perfect fit of the data variables, which is good and implied that the dataset is 

perfectly structured and well suitable to train machine learning algorithm or the prediction of greenhouse condition.  

Figure 3 showed the correlation heatmap of the dataset, while Figure 4 presents the distribution of greenhouse 

variables. This set of histograms shows how often different values of temperature, humidity, light, soil moisture, 

nutrients, and yield occurred in the greenhouse. Each plot has bars (frequency) with a smooth curve on top showing 

the overall shape. In the results, with distribution of temperature, most values cluster around 30–32 °C, higher than 

the ideal range. This suggests overheating is a common issue that must be managed to protect plants. 

The humidity distribution spread between 55% and 90%, showing two groups one during the dry season (lower 

humidity) and one during the rainy season (higher humidity). Humidity affects how plants lose water, so it’s a key 
factor for irrigation planning. 

For the Light (PAR) distribution, most values are between 150–200 µmol/m²/s, but often below the ideal. This 

shows that cloudy weather reduces available light, and supplemental lighting may be needed.  Soil moisture 

distribution clustered around 55–60%, showing irrigation kept soil relatively wet, but there may still be periods of 

under- or over-watering. Proper balance is essential for root health.  Nutrient distribution (N%) shows peaks at 

different points, meaning nutrient supply varies with fertilizer applications. Monitoring this ensures crops always 
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have the right nutrients at the right time; while daily yield distribution values are close to zero, with very few higher 

yields. 

 
Figure 3: The Correlation Heatmap Analysis  Figure 4: Distribution analysis of the training dataset 

This suggests that despite reasonable environmental conditions, plants are not achieving their potential. This makes 

it clear that better control and optimization of all factors together are necessary. These distributions show that the 

greenhouse often runs outside of the ideal range for several factors. AI systems can help by detecting when 
conditions drift away from the ideal and adjusting in real time, ensuring plants always grow in their “comfort zone.” 

The three sets of diagrams collectively reveal that greenhouse productivity is influenced by the dynamic interplay 

between temperature, humidity, light, water, and nutrients. While some conditions (like soil moisture) appear 

moderately controlled, others (like temperature, humidity, and light) show frequent deviations from ideal thresholds. 

Yield remains low and inconsistent, reflecting the inability of manual or traditional control methods to optimize 

multiple variables simultaneously. By integrating sensor data, recognizing complex correlations, and predicting 

yield-limiting conditions, such a system can automatically regulate ventilation, irrigation, and lighting. This ensures 

crops remain within their physiological comfort zone, ultimately improving growth, reducing resource waste, and 

maximizing productivity. 

 

4.1 Result of ANN Training and greenhouse condition prediction model generation 

Training of the neural network produced the greenhouse environmental condition prediction model. The model 
performance was evaluated considering accuracy, loss and mean absolute error. The results of the training process 

were reported in the Figure 5 for accuracy and loss, while Figure 6 presents the mean absolute error performance. 

The results across several epochs showed consistent accuracy value of 1, which is very good and implied that out 

model was able to correctly predict the environmental condition at the greenhouse with 100% success rate. The 

reason was due to the superior performance of the neural network and also careful preparation of the training 

dataset. The training loss recorded 2.6657e-04, while the validation loss reported 2.0761e-04. The MAE recorded 

0.028, which is 2.8% deviation error. These loss and error values are very tolerable and implied that our model was 

able to correctly predict greenhouse condition with limited error. The coefficient determination value reported 

0.9719 which approximates in percentage 97.2% for correctly predicting greenhouse environmental variables. These 

results makes the ANN based greenhouse condition prediction model suitable for real-time monitoring of the 

testbed. 
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Figure 5: Result of ANN training   

 
Figure 6: Result of the MAE for the ANN training  

4.2 Result of System Validation  

In the system validation, we compared the performance of the characterized system, the new system against the ideal 

benchmark results. The validation process aimed to confirm whether the integration of AIETCS reliably maintain 

greenhouse parameters such as temperature, humidity, soil moisture, and PAR within acceptable thresholds. By 

analyzing deviations across the rainy and harmattan seasons, the results provided quantitative evidence of the 

system’s stability, adaptability, and overall effectiveness in aligning environmental conditions with optimal plant 
growth requirements. 

Table 3: Comparative greenhouse performance during Rainy Season  

Time 
Hour 
GMT 

Characterized New Ideal 

T 𝑪𝒐 H% Soil 

Moist

ure % 

PAR 

umol

_m2_

s 

T 𝑪𝒐 H% Soil 

Moist

ure % 

PAR 

umol_

m2_s 

T 𝑪𝒐 H% Soil 

Moist

ure % 

PAR 

umol_m

2_s 

0:01 20.35 45.15 27.37 20.35 25.25 72.82 57.23 178.3 26.00 75.00 58.67 193.18 

1:00 21.63 42.79 30.05 21.63 26.38 74.9 55.17 193.49 26.00 75.00 58.67 193.18 

2:00 26.39 55.39 12.8 26.39 25.83 70.64 59.64 191.46 26.00 75.00 58.67 193.18 

3:00 21.51 40.68 17.88 21.51 25.49 72.93 58.53 191.87 26.00 75.00 58.67 193.18 

4:00 20.42 59.13 14.87 20.42 24.38 73.5 59.47 192.67 26.00 75.00 58.67 193.18 

5:00 18.7 34.66 24.97 18.7 24.38 69.52 59.21 179.59 26.00 75.00 58.67 193.18 

6:00 20.66 55.24 26.61 20.66 24.13 73.61 57.52 184.92 26.00 75.00 58.67 193.18 

7:00 18.87 47.38 25.86 18.87 26.17 70.42 59.37 180.37 26.00 75.00 58.67 193.18 
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8:00 22.79 56.42 27.3 22.79 25.5 69.66 54.62 194.39 26.00 75.00 58.67 193.18 

9:00 24.16 45.82 29.44 24.16 25.77 76.09 55.23 189.89 26.00 75.00 58.67 193.18 

10:00 22.63 45.97 20.52 22.63 24.04 76.21 54.37 184.41 26.00 75.00 58.67 193.18 

11:00 18.63 48.13 31.78 18.63 26.43 75.07 55.97 179.39 26.00 75.00 58.67 193.18 

12:00 19.2 47.84 21.93 19.2 26.09 71.4 56.33 184.03 26.00 75.00 58.67 193.18 

13:00 21.16 25.81 30.21 21.16 24.52 69.89 55.66 184.3 26.00 75.00 58.67 193.18 

14:00 24.62 62.87 33.11 24.62 24.44 74.17 58.84 191.88 26.00 75.00 58.67 193.18 

15:00 24.69 49.15 26.64 24.69 24.45 72.39 56.15 190.16 26.00 75.00 58.67 193.18 

16:00 20.97 47.51 23.36 20.97 24.75 70.07 55.72 194.84 26.00 75.00 58.67 193.18 

17:00 23.38 52.74 23.54 23.38 25.31 72.79 57.21 187.06 26.00 75.00 58.67 193.18 

18:00 18.71 49.15 21.67 18.71 25.07 69.43 54.92 180.44 26.00 75.00 58.67 193.18 

19:00 17.62 42.58 24.63 17.62 24.72 75.8 58.69 191.58 26.00 75.00 58.67 193.18 

20:00 21.81 43.45 24.6 21.81 25.53 71.07 54.54 192.47 26.00 75.00 58.67 193.18 

21:00 25.2 43.4 24.96 25.2 24.34 74.01 59.74 188.73 26.00 75.00 58.67 193.18 

22:00 18.03 33.32 24.31 18.03 24.72 71.45 58.52 192.66 26.00 75.00 58.67 193.18 

23:00 22.65 30.09 22.17 22.65 24.91 72.97 55.25 187.46 26.00 75.00 58.67 193.18 

AVG 21.44 46.027 24.60 21.44 25.09 72.52 57 187.76 26.00 75.00 58.67 193.18 

Ideal 25.99 74.99 58.66 25.99 26 75 58.67 193.18 26.00 75.00 58.67 193.18 

𝞷(%) 17.50 38.66 58.06 17.50 3.48 3.3 2.85 2.8 26.00 75.00 58.67 193.18 

 

The comparative results presented in Table 3 clearly demonstrate the superiority of the newly developed greenhouse 

control system, which integrates ANN-based greenhouse condition prediction model with the event-triggered control 
strategy. Under the rainy season condition, the old characterized system recorded large deviations from the ideal 

setpoints, with temperature, humidity, soil moisture (pH proxy), and PAR deviating by 17.50%, 38.66%, 58.06%, 

and 17.50%. 

 
Figure 7: Comparative greenhouse performance in rainy season  

 

The result in Figure 7 for the old system reflects poor stability and limited adaptability to environmental variability. 

In contrast, the new system which is AIETCS based maintained the same parameters at deviations as low as 3.48%, 
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3.30%, 2.85%, and 2.80%, showing a dramatic reduction in error margins and a much closer alignment with the 
ideal conditions. This improvement can be attributed to the ANN’s ability to learn complex nonlinear relationships 

between environmental inputs and plant growth requirements, while the event-triggered control ensures timely 

corrective actions only when deviations exceed thresholds, minimizing unnecessary energy use. Together, these 

features provide a self-adaptive, intelligent, and resource-efficient regulation mechanism. The system not only 

ensures stable microclimatic conditions but also justifies its development by improving productivity, reducing 

resource wastage, and guaranteeing resilience against seasonal fluctuations, thereby addressing the limitations of the 

old control approach. 

Table 4: Comparative greenhouse performance during Hamathan Season  

Time  
Hour 
GMT 

Characterized New Ideal 

T 𝑪𝒐 H% Soil 
Moistu

re % 

PAR 

umol

_m2_

s 

T 𝑪𝒐 H% Soil 
Moist

ure % 

PAR 

umol_

m2_s 

T 𝑪𝒐 H% Soil 
Moist

ure % 

PAR 

umol_

m2_s 

0:01 28.02 67.91 38.2 136 24.93 72.50 57.23 178.30 26.00 75.00 58.67 193.18 

1:00 29.28 75.84 57.36 116 26.38 74.90 55.17 193.49 26.00 75.00 58.67 193.18 

2:00 20.36 55.5 36.15 120 25.83 70.64 59.64 191.46 26.00 75.00 58.67 193.18 

3:00 23.79 70.06 57.51 148 25.49 72.93 58.53 191.87 26.00 75.00 58.67 193.18 

4:00 29.02 55.82 30.91 120 24.38 73.50 59.47 192.67 26.00 75.00 58.67 193.18 

5:00 22.67 53.39 45.23 227 24.38 69.52 59.21 179.59 26.00 75.00 58.67 193.18 

6:00 27.91 88.61 60.09 216 24.13 73.61 57.52 184.92 26.00 75.00 58.67 193.18 

7:00 26.08 70.66 53.72 053 26.17 70.42 59.37 180.37 26.00 75.00 58.67 193.18 

8:00 24.55 76.96 52.64 118 25.50 69.66 54.62 194.39 26.00 75.00 58.67 193.18 

9:00 24.29 66.97 37.98 177 25.77 76.09 55.23 189.89 26.00 75.00 58.67 193.18 

10:00 26.49 71.9 49.61 132 24.04 76.21 54.37 184.41 26.00 75.00 58.67 193.18 

11:00 28.64 60.57 47.43 103 26.43 75.07 55.97 179.39 26.00 75.00 58.67 193.18 

12:00 32.03 71.41 30.85 162 26.09 71.40 56.33 184.03 26.00 75.00 58.67 193.18 

13:00 25.77 75.29 39.47 134 24.52 69.89 55.66 184.30 26.00 75.00 58.67 193.18 

14:00 24.6 58.89 44.59 149 24.44 74.17 58.84 191.88 26.00 75.00 58.67 193.18 

15:00 27.3 71.46 41.29 277 24.45 72.39 56.15 190.16 26.00 75.00 58.67 193.18 

16:00 26.48 69 43.37 154 24.75 70.07 55.72 194.84 26.00 75.00 58.67 193.18 

17:00 23.79 50.63 41.16 198 25.31 72.79 57.21 187.06 26.00 75.00 58.67 193.18 

18:00 26.49 71.02 35.95 160 25.07 69.43 54.92 180.44 26.00 75.00 58.67 193.18 

19:00 29.36 61.09 36.5 106 24.72 75.80 58.69 191.58 26.00 75.00 58.67 193.18 

20:00 29.78 54.37 40.77 149 25.53 71.07 54.54 192.47 26.00 75.00 58.67 193.18 

21:00 25.33 59.36 47.46 180 24.34 74.01 59.74 188.73 26.00 75.00 58.67 193.18 

22:00 26.51 80.18 66.31 171 24.72 71.45 58.52 192.66 26.00 75.00 58.67 193.18 

23:00 33.52 79.4 49.41 133 24.91 72.97 55.25 187.46 26.00 75.00 58.67 193.18 

AVG 
26.7525 

67.34
542 45.165 

151.6
25 

25.09 72.52 57.00 187.76 26.00 75.00 58.67 193.18 

Ideal 25.9997
9 

74.99
872 

58.665
71 

193.1
798 

26.00 75.00 58.67 193.18 26.00 75.00 58.67 193.18 

𝞷(%) 2.90 10.20 22.99 21.51 3.48 3.30 2.85 2.80 26.00 75.00 58.67 193.18 
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The comparative greenhouse performance in Table 4 during the Harmattan season highlights the effectiveness of the 

new ANN predictive control system for greenhouse and event-triggered control system. Under the characterized 

(old) system, the greenhouse conditions deviated significantly from the ideal, with temperature, humidity, soil 

moisture (pH proxy), and PAR showing errors of 2.90%, 10.20%, 22.99%, and 21.51%, respectively as shown in 
Figure 8.  

 
Figure 8: Comparative greenhouse performance in Hamathan 

These large deviations in Figure 8 reflect the challenges of Harmattan, where dry winds, dust, and fluctuating 

radiation levels make environmental regulation difficult. In contrast, the new system achieved much tighter control, 

recording deviations of only 3.48% for temperature, 3.30% for humidity, 2.85% for soil moisture, and 2.80% for 

PAR. This shows that while the old system struggled particularly with humidity, soil moisture, and light regulation, 
the ANN-based approach minimized error margins across all parameters. The improvement can be attributed to the 

ANN’s capacity to model nonlinear seasonal dynamics and the event-control mechanism’s ability to trigger rapid 

adjustments when thresholds are exceeded. Overall, the new system demonstrates superior adaptability to Harmattan 

stress, ensuring stable microclimate conditions that promote plant growth, reduce risk of stress or disease, and 

optimize input efficiency despite the harsh seasonal environment. 

Overall, the comparative results across the Rainy and Harmattan seasons confirm that the new ANN and event-

triggered control system ensures consistent greenhouse performance under contrasting climatic conditions. During 

the Rainy season, where excess humidity and reduced solar radiation are the main challenges, the system-maintained 

deviations within 3.48%, 3.30%, 2.85%, and 2.80% for temperature, humidity, soil moisture, and PAR, respectively, 

preventing excessive moisture buildup while sustaining optimal light and temperature for growth. In the Harmattan 

season, characterized by dry winds, low humidity, and high radiation fluctuations, the system again kept deviations 
low at 3.48%, 3.30%, 2.85%, and 2.80%, overcoming the limitations of the old system, which showed far higher 

error levels in humidity, soil moisture, and PAR. This consistency across both extremes demonstrates that the new 

intelligent control model is not only adaptive and resilient but also reliable in stabilizing the greenhouse 

microclimate year-round, ensuring crop health and resource efficiency regardless of external seasonal stresses. 

 

5. CONCLUSION 

The paper aimed at designing and creating an AIETCS to monitor and predict greenhouse using an ANN. This was 

driven by the fact that there has been a constant inconsistency between ideal greenhouse environmental conditions 

as documented in literature and the volatile conditions that have been experienced in field practice, which in most 

cases, lower crop yield and resource efficiency. The quantitative simulation-based approach was taken. Initial 

characterization of greenhouse was done to determine the baseline conditions and optimal set points of the important 

variables: air temperature, relative humidity, soil moisture, photosynthetically active radiation (PAR) and soil 
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nutrients. Greenhouse operations were surveyed during the rainy and the Harmattan seasons, which recorded time 
variation of the environmental state and crop growth performance. 

The suggested AIETCS architecture comprised the sensor data acquisition, pre-processing, ANN-based prediction, 

event-triggered logic, and actuator control. ANN was trained on pre-processed (scaling, imputation, balancing) 

multi-season greenhouse data, the data were divided into training (70%), validation (15%), and testing (15%) sets. 

The ANN was able to identify the nonlinearities between the environmental variables and the greenhouse outcome. 

Low validation loss, absolute error of mean of about 2.8% and coefficient of determination (R2R2R2) of 0.97, all 

reflect high predictive capability of the training. The three setups that were compared during system validation were: 

(i) baseline that defined greenhouse, (ii) AIETCS using ANN prediction, and (iii) literature based ideal benchmarks. 

Findings established that the deviations under ideal conditions were high (up to 58% of soil moisture and 

approximately 38% of relative humidity) but the AIETCS revealed a steady deviation of 3350 (3-35) of all the 

variables in either season. This advancement came in the form of more predictable crop growing conditions, lower 

actuation rate, and less waste of resources. 
To sum up, the created ANN-based event-driven control system demonstrated greatly enhanced greenhouse stability 

and prediction accuracy in comparison with the baseline operations. This feature is allowed by the inclusion of AI in 

the control of greenhouses, which allows the active regulation of important variables to maintain conditions as close 

as possible with the minimum use of resources. This study therefore contributes a scalable, intelligent control 

framework that enhances agricultural productivity, resource efficiency, and sustainability. 
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