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1. INTRODUCTION

Falana et al. (2024) define a greenhouse as a building surrounded with an objective of cultivating crops. It is meant
to shield plants against poor climatic conditions and it generally comprises of frames composed of transparent
substances like glass and polyethylene. The development of greenhouse farming, as well as other methods of
controlled environment, has been designed to generate viable micro-climates to allow crops to grow all year round
or during certain seasons (Maraveas et al., 2023). These technologies are also essential to produce vegetables,
ornamentals, and high-value food crops in cold climates in the off-season when outdoor production is not feasible
(Abou-Mehdi-Hassani et al., 2022).

In the world, countries are having difficulties to sustain the increasing food needs of its citizens. This crisis
highlights the economic necessity to reconcile the population growth to the food security. The food production and
quality enhancement requires modern technologies and precision agriculture techniques including greenhouse
farming (Abdeen, 2024). To them, the implementation of electronic information systems in greenhouse farms can be
used to create profound improvements in year-round production of food and positively affect the economies of
nations (Kumar et al., 2022). Such systems are able to observe and regulate temperature, humidity, and light
intensity to provide all the best conditions in growing crops (Singh et al., 2021).

Glasshouses or greenhouses are climate-controlled facilities that are available throughout the year to grow sensitive
or out of season plants. They are classified according to shape, and such types as Gable, Flat arch, Raised dome,
Sawtooth, Skillion, and Tunnel (Abdulquadri, 2023). The main role of these buildings is to protect crops against
unfavorable factors like high or low temperatures, wind, hail, rain, snow, pests and diseases (Zhang et al., 2020). It
is important to make sure that the greenhouses have optimal natural light intensity to produce crops more efficiently
(Chen et al., 2023).

Conventionally used control of humidity, light, and temperature are not always effective. The manual observation of
climate in human senses is not practical even to maintain climate 24/7, which creates demands on smart greenhouse
technologies and electronic control systems (Bhatt, 2021). These challenges can be solved by creating cost-effective
greenhouses that have features such as shading, air circulation by use of treated nets, and pests (Rahman et al.,
2022). The process of climate control can be automated by smart systems that enhance efficiency and lead to less
reliance on labor (Ghosh et al., 2023).
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The previous greenhouse surveillance systems were based on wired sensor networks which added cablings and
hampered farm operations. The wireless sensor networks (WSNs) have been used to handle such a problem,
allowing mobility and decreasing clutter (Patel et al., 2021). WSNs together with machine learning make climatic
monitoring in real-time without people (Lee et al., 2020). The technologies help to make communication between
sensors and control units smooth to enhance the management of greenhouses (Al-Turjman et al., 2023).

In far off greenhouse areas, important climate activities can be forgotten as there will be no human supervision.
Such activities as irrigation and light control should be automated and can be performed with the help of event-
triggered approaches (ETA) (Rani et al., 2021). Actuators can be activated by controllers coded to act on WSN data
depending on the particular climate needs related to the crop (Sharma et al., 2022). Implementation can become a
complicated task; however with lower cost and dependable systems, this technology can be affordable to farmers
(Mishra et al., 2023).

In Nigeria, farmer reluctance to invest in greenhouse agriculture stems from high setup costs, lack of expertise, and
uncertainty about outcomes. A survey by Maisha Mazuri Consultancy (2023) revealed that over 83.25% of farmers
practicing protected agriculture do not utilize greenhouse technology. This issue demands urgent attention,
especially given Nigeria’s economic challenges. Increased research and innovation, supported by universities and
government initiatives, can promote awareness and adoption of modern agricultural practices (Okafor et al., 2024).
2. RESEARCH METHODOLOGY

Quantitative and simulation approach is the methodology that is adopted in this study. It was used to fulfill the study
objective through the integration of system characterization, intelligent control system design, artificial intelligence
integration, and validation through simulation. This approach starts with the description of greenhouse farming
systems so as to learn the basic environmental variables that determine crop yield. Parameters of interest will be
temperature, humidity, soil moisture and light intensity that will be investigated using both secondary data sources
found in literature as well as primary data sources like existing greenhouse setups. It will be followed by the creation
of an intelligent event-driven control system that will allow real-time monitoring and automatic reaction to any
changes in the greenhouse environment. The predictive models will be constructed using a machine learning
approach that will be able to learn on historical data and therefore spot anomalies or critical thresholds. The control
logic will be programmed to take certain measures like irrigation, ventilation, or lighting modifications once the
non-conformity to the ideal conditions is detected. The methodology also includes the design and development of a
green house monitoring and control system based on artificial intelligence. To be implemented, the system will be
modeled and tested on the Proteus software to simulate the hardware of sensor, microcontrollers, and actuators and
Python programming language will be used to implement algorithms, data analysis, and machine learning. The
simulation tools help make it cost-effective, allow testing a variety of scenarios, and verify it prior to physical
implementation. Lastly, analysis of performance will be done by simulation experiments. The system would be put
through different conditions of the environment. To confirm the success of the proposed Al-based greenhouse
control system, the experimental results will be compared with the measurements of the baseline values at the
beginning of the system characterization.

2.2 Data Acquisition

Data of the greenhouse condition was collected using the setup in figure 3.2. The plants considered are pepper and
tomatoes. To account for temporal variability, measurements were taken at one hour intervals each day for 24 hours.
Seasonal variations were captured by conducting data collection campaigns during both the dry season (harmattan,
November—February) and the rainy season (April-July). The year of data collection is 2023- 2024. After the data
collection, the overall daily hourly average of the environmental condition across season was compared with the
ideal data and then used for analysis. Alongside environmental and soil data, crop growth parameters such as plant
height, leaf area, flowering time, and yield per plant were recorded. Plant height was measured with a meter rule,
leaf area was estimated using a leaf area meter, and yield was quantified using a digital weighing balance. The
selection of these parameters and instruments was guided by their relevance to the physiology of tomato and pepper
crops. By considering seasonal variations, the data collection framework ensured a very good characterization of the
greenhouse farm. The collected data are reported in Table 1 and 2.

Table 1: Overall average daily hourly greenhouse condition for Hamathan Season

Timestamp (GMT) | Temperature_°C Humidity_% Soil_Moisture_% PAR_umol_m2_s
Houly
0:01 20.35 45.15 27.37 147
1:00 21.63 42.79 30.05 152
2:00 26.39 55.39 12.8 127
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3:00 21.51 40.68 17.88 144
4:00 20.42 59.13 14.87 155
5:00 18.7 34.66 24.97 164
6:00 20.66 55.24 26.61 132
7:00 18.87 47.38 25.86 74
8:00 22.79 56.42 27.3 87
9:00 24.16 45.82 29.44 154
10:00 22.63 45.97 20.52 104
11:00 18.63 48.13 31.78 123
12:00 19.2 47.84 21.93 263
13:00 21.16 25.81 30.21 128
14:00 24.62 62.87 33.11 189
15:00 24.69 49.15 26.64 161
16:00 20.97 47.51 23.36 107
17:00 23.38 52.74 23.54 258
18:00 18.71 49.15 21.67 149
19:00 17.62 42.58 24.63 119
20:00 21.81 43.45 24.6 148
21:00 25.2 43.4 24.96 138
22:00 18.03 33.32 2431 110
23:00 22.65 30.09 22.17 097
AVG 21.44917 46.02792 24.6075 142.9167
Ideal 25.99979 74.99872 58.66571 193.1798
Deviation (%) 17.50 38.66 58.06 26.05

Table 1 presents the results of the greenhouse condition characterized considering temperature, humidity, light, and
soil pH as the main environmental variables. From the results, it was observed that the average overall temperature
at the testbed is 21.44917 °C, which is about 17.5% lower than the ideal benchmark value of 25.99979 °C.
Similarly, the average humidity was 46.02792%, representing a deviation of approximately 38.6% from the required
74.99872%. Soil moisture also averaged 24.6075%, which is about 58.1% below the optimal 58.66571%. In terms
of PAR, the greenhouse recorded 142.9167 umol/m?/s, about 26.0% lower than the ideal value of 193.1798
pmol/mz/s. These significant deviations highlight that the prevailing microclimatic conditions are far from optimal
for sustaining healthy tomato and pepper plant growth and productivity. The current manual monitoring methods at
the farm are inadequate for capturing such fluctuations in real time, especially when multiple variables interact
dynamically. Therefore, the findings underscore the critical need for an intelligent greenhouse monitoring and
control system driven by Artificial Intelligence. Table 2 presents the overall average daily hourly greenhouse
condition for rainy season.

Table 2: Overall average daily hourly greenhouse condition for Rainy Season

Timestamp Temperature_°C Humidity_% Soil_Moisture_% PAR_umol_m2_s
(GMT) Hourly
0:01 28.02 67.91 38.2 136
1:00 29.28 75.84 57.36 116
2:00 20.36 55.5 36.15 120
3:00 23.79 70.06 57.51 148
4:00 29.02 55.82 30.91 120
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5:00 22.67 53.39 45.23 227
6:00 27.91 88.61 60.09 216
7:00 26.08 70.66 53.72 053
8:00 24.55 76.96 52.64 118
9:00 24.29 66.97 37.98 177
10:00 26.49 71.9 49.61 132
11:00 28.64 60.57 47.43 103
12:00 32.03 71.41 30.85 162
13:00 25.77 75.29 39.47 134
14:00 24.6 58.89 44.59 149
15:00 27.3 71.46 41.29 277
16:00 26.48 69 43.37 154
17:00 23.79 50.63 41.16 198
18:00 26.49 71.02 35.95 160
19:00 29.36 61.09 36.5 106
20:00 29.78 54.37 40.77 149
21:00 25.33 59.36 47.46 180
22:00 26.51 80.18 66.31 171
23:00 33.52 79.4 49.41 133
AVG 26.7525 67.34542 45.165 151.625
ideal 25.99979 74.99872 58.66571 193.1798
Deviation (%) 2.90 10.20 22.99 21.51

The analysis of the rainy season greenhouse conditions in Table 2 reveals that the average temperature recorded was
26.75 °C, which is slightly higher than the ideal benchmark of 25.99 °C, giving a deviation of about 2.90%. This
indicates that the temperature levels are within an acceptable range for plant growth, although minor fluctuations
may still impact temperature-sensitive crops. The average relative humidity was 67.35%, which is lower than the
ideal 74.99%, showing a 10.20% deviation. While the value falls within a moderately suitable range, the reduction
in humidity could lead to increased evapotranspiration and stress for crops requiring high moisture content.

Soil moisture during the rainy season averaged 45.17%, against the recommended 58.67%, representing a significant
22.99% shortfall. Despite rainfall, this suggests that water distribution within the greenhouse soil was uneven, which
may affect root water uptake and overall plant physiology. For PAR, the greenhouse recorded 151.63 pmol/m?/s,
compared to the ideal 193.18 pumol/m?/s, translating to a 21.51% deficit. This reduced light intensity, common
during cloudy and rainy periods, could negatively affect photosynthesis efficiency and crop productivity.In
summary, while temperature levels during the rainy season are relatively close to the ideal, the considerable
deviations in soil moisture, humidity, and light intensity highlight the challenges of maintaining optimal
microclimatic conditions. These findings emphasize the necessity of deploying an Al-driven intelligent monitoring
and control system capable of dynamically regulating irrigation, ventilation, and supplemental lighting. Such a
system would ensure that even during periods of environmental variability, the greenhouse maintains stable and
crop-friendly conditions for improved yield and resource efficiency.

3. DEVELOPMENT OF THE INTELLIGENT EVENT TRIGGERING CONTROL SYSTEM FOR REAL-
TIME MONITORING AND PREDICTION OF GREENHOUSE CONDITION USING ANN

The intelligent event-triggering control system is designed for monitoring and prediction of dynamic changes in
greenhouse conditions in real time. Its development is based on the integration of an Artificial Neural Network
(ANN) model for prediction, and generation of control actions. The following subsections describe the development
stages in detail.
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3.1 ANN Model Design
The ANN model was structured to capture the nonlinear relationships between environmental parameters and
greenhouse events. The input layer consisted of sensor data representing temperature, humidity, soil pH, light
intensity, and soil moisture. The hidden layers employed nonlinear activation functions (ReLU and Sigmoid) to
learn complex interactions between these variables. The output layer generated classification results corresponding
to environmental condition in the farm. The mathematical model of ANN neuron is presented as Algorithm 1
Algorithm 1: Python code of the ANN model
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# Define ANN model
model = keras.Sequential ([
layers.Dense (64, activation='relu', input shape=(X train.shape(l],)),
layers.Dense (32, activation='relu'),

layers.Dense (1) # regression output
1)
# Compile
model.compile (optimizer="'adam', loss='mse', metrics=['mae'])
# Train

history = model.fit (X train, y train,

validation data=(X test, y test),

epochs=50, batch size=32, verbose=1l)
3.2 Training Dataset and Preparation
The training dataset was collected from the testbed considering the period of 2020 to 2024 with daily information
that characterized the greenhouse. The sample size of the data collected is 35064 records for tomato and pepper
plants. Each record consisted of input features (environmental variables) and labeled outputs (control events). Data
augmentation and normalization were applied to improve generalization and prevent bias from uneven event
distributions using synthetic monitoring over sampling approach. The dataset was divided into training (70%),
validation (15%), and testing (15%) subsets for effective model development. Algorithm 2 presents sample results of
training python code of the proposed model.
Algorithm 2: Codes of the data importation and preparation
from google.colab import files
import pandas as pd

# Upload CSV file
uploaded = files.upload()

# Load into pandas DataFrame
file name = list (uploaded.keys()) [0] # get uploaded filename
df = pd.read csv(file name)

print ("Data shape:", df.shape)
print ("Columns:", df.columns.tolist())

# Preview

df .head()

Data preparation codes

from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler

# Noramlization and augmentation

X = df[["temperature C", "relative humidity pct", "PAR umol m2 s",
"N_pct"]]

y = df["daily yield kg"]
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# Split dataset
X train, X test, y train, y test = train test split (X, y, test size=0.2,
random state=42)

# Scale features for ANN

scaler = StandardScaler ()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)

3.3 ANN Training and greenhouse condition prediction model generation

Model training was conducted using the backpropagation algorithm with an adaptive learning rate optimizer
(Adam). The loss function used was categorical cross-entropy, suitable for multi-class event prediction. Early
stopping and dropout techniques were incorporated to prevent over fitting and ensure generalization across unseen
data. Performance metrics such as mean square error, loss and accuracy were used to evaluate the model’s predictive
ability. Once the ANN was trained, a greenhouse condition prediction model was generated. This control model
established a closed-loop system where real-time sensor data was continuously fed to the ANN, and actuator
responses were automatically executed without human intervention. Model validation involved comparing ANN-
predicted events with actual environmental conditions and control responses. Performance was benchmarked against
ideal data collected to demonstrate improvements in efficiency, adaptability, and resource conservation. Figure 1
presents flow chart of the greenhouse condition prediction model.

N/

/ Data from farm /

<

Trained greenhouse prediction model

4

Process data from farm environment

Is processing
completed

Predict farm condition

~

/ Return farm condition status /

Figure 1: Flowchart of the greenhouse condition prediction model

4. RESULT OF TRAINING DATA ANALYSIS

Historical data of the testbed was collected over four years, 2021 to 2024 and the reason as to train neural network
and generate greenhouse condition prediction model. The collected data was analyzed across using diagonal plots in
Figure 2.
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Figure 2: Diagonal and off diagonal scatter plots of the greenhouse data

This plot in Figure 2 shows the pairwise relationships among the main variables: temperature (°C), relative humidity
(%), PAR (umol/m#s), N content (%), and daily yield (kg). The plot gives the distribution of each variable
individually. For example, temperature shows a multi-modal distribution, meaning the greenhouse experienced
different operating temperature ranges which is due to seasonal variations). Similarly, humidity has two clear
clusters, indicating dry and wet periods. This clustering is important because plants respond differently in these
ranges, and Al-based monitoring can learn seasonal patterns for better prediction.

The Off-diagonal scatter plots reveal correlations among variables in the dataset. For instance, temperature and
humidity show a strong negative relationship as temperature increases, humidity tends to drop. This is a well-known
greenhouse challenge, since higher temperature drives evapotranspiration and reduces relative humidity, stressing
crops. Similarly, PAR vs. yield shows scattered low yield values, suggesting that even under good light, yield does
not always increase and the reason was due to limiting factors like soil moisture or nutrient deficiencies.

This matrix reveals that no single factor determines yield rather, yield emerges from the complex interaction of
temperature, humidity, soil moisture, and nutrient availability. Figure 3 presents the correlation heatmap. The figure
maps out the relationships between all greenhouse parameters, with each square showing how strongly two factors
are related, with red meaning strong positive correlation and blue meaning strong negative correlation. The diagonal
matrix value of 1 indicates that perfect fit of the data variables, which is good and implied that the dataset is
perfectly structured and well suitable to train machine learning algorithm or the prediction of greenhouse condition.
Figure 3 showed the correlation heatmap of the dataset, while Figure 4 presents the distribution of greenhouse
variables. This set of histograms shows how often different values of temperature, humidity, light, soil moisture,
nutrients, and yield occurred in the greenhouse. Each plot has bars (frequency) with a smooth curve on top showing
the overall shape. In the results, with distribution of temperature, most values cluster around 30-32 °C, higher than
the ideal range. This suggests overheating is a common issue that must be managed to protect plants.

The humidity distribution spread between 55% and 90%, showing two groups one during the dry season (lower
humidity) and one during the rainy season (higher humidity). Humidity affects how plants lose water, so it’s a key
factor for irrigation planning.

For the Light (PAR) distribution, most values are between 150-200 pmol/m?/s, but often below the ideal. This
shows that cloudy weather reduces available light, and supplemental lighting may be needed. Soil moisture
distribution clustered around 55-60%, showing irrigation kept soil relatively wet, but there may still be periods of
under- or over-watering. Proper balance is essential for root health. Nutrient distribution (N%) shows peaks at
different points, meaning nutrient supply varies with fertilizer applications. Monitoring this ensures crops always
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have the right nutrients at the right time; while daily yield distribution values are close to zero, with very few higher
yields.
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Figure 3: The Correlation Heatmap Analysis Figure 4: Distribution analysis of the training dataset

This suggests that despite reasonable environmental conditions, plants are not achieving their potential. This makes
it clear that better control and optimization of all factors together are necessary. These distributions show that the
greenhouse often runs outside of the ideal range for several factors. Al systems can help by detecting when
conditions drift away from the ideal and adjusting in real time, ensuring plants always grow in their “comfort zone.”
The three sets of diagrams collectively reveal that greenhouse productivity is influenced by the dynamic interplay
between temperature, humidity, light, water, and nutrients. While some conditions (like soil moisture) appear
moderately controlled, others (like temperature, humidity, and light) show frequent deviations from ideal thresholds.
Yield remains low and inconsistent, reflecting the inability of manual or traditional control methods to optimize
multiple variables simultaneously. By integrating sensor data, recognizing complex correlations, and predicting
yield-limiting conditions, such a system can automatically regulate ventilation, irrigation, and lighting. This ensures
crops remain within their physiological comfort zone, ultimately improving growth, reducing resource waste, and
maximizing productivity.

4.1 Result of ANN Training and greenhouse condition prediction model generation

Training of the neural network produced the greenhouse environmental condition prediction model. The model
performance was evaluated considering accuracy, loss and mean absolute error. The results of the training process
were reported in the Figure 5 for accuracy and loss, while Figure 6 presents the mean absolute error performance.
The results across several epochs showed consistent accuracy value of 1, which is very good and implied that out
model was able to correctly predict the environmental condition at the greenhouse with 100% success rate. The
reason was due to the superior performance of the neural network and also careful preparation of the training
dataset. The training loss recorded 2.6657e-04, while the validation loss reported 2.0761e-04. The MAE recorded
0.028, which is 2.8% deviation error. These loss and error values are very tolerable and implied that our model was
able to correctly predict greenhouse condition with limited error. The coefficient determination value reported
0.9719 which approximates in percentage 97.2% for correctly predicting greenhouse environmental variables. These
results makes the ANN based greenhouse condition prediction model suitable for real-time monitoring of the
testbed.

Vol. 4, Issue X; No. 59, October, 2025, pp. 619-631



International Journal of Artificial Intelligence Trends (1JAIT)
Vol. 4, Issue X; No. 59, October, 2025, pp. 619-631

1.0000 +

0.9995 4

0.9990 +

Accuracy

0.9980 -

0.9975 4

0.9985 +

Training vs Validation Accuracy

Training vs Validation Loss

Train Accuracy

Validation Accuracy

Binary Crossentropy Loss

—— Train Loss
Validation Loss

0

5

10 15
Epochs

Figure 5: Result of ANN training

Mean Absalute Error

20

25

30

10

15 20

Epochs

25

30

o O
— Train MAE
wal MAE
o055
o.O=F
o.03 -F'\J/\
o

- e, —

0.0z J“\f’\,/,\/‘\/ L—.._,.\’\/; vr“\-f"ﬁ\'
o 10 z0o =0 ao s0
Epochs

Figure 6: Result of the MAE for the ANN training
4.2 Result of System Validation
In the system validation, we compared the performance of the characterized system, the new system against the ideal
benchmark results. The validation process aimed to confirm whether the integration of AIETCS reliably maintain
greenhouse parameters such as temperature, humidity, soil moisture, and PAR within acceptable thresholds. By
analyzing deviations across the rainy and harmattan seasons, the results provided quantitative evidence of the
system’s stability, adaptability, and overall effectiveness in aligning environmental conditions with optimal plant
growth requirements.
Table 3: Comparative greenhouse performance during Rainy Season

Time Characterized New Ideal

Hour "3 ¢co H% Soil PAR | TC® H% Soil PAR TC® H% Soil PAR
GMT Moist | umol Moist | umol_ Moist | umol_m

ure% | _m2_ ure% | m2_s ure% | 2_s

0:01 | 20.35 45.15 | 27.37 S20.35 25.25 | 72.82 | 57.23 178.3 | 26.00 | 75.00 | 58.67 193.18
1:00 | 21.63 42.79 | 30.05 | 21.63 | 26.38 749 | 55.17 | 193.49 | 26.00 | 75.00 | 58.67 193.18
2:00 | 26.39 55.39 12.8 | 26.39 | 25.83 | 70.64 | 59.64 | 191.46 | 26.00 | 75.00 | 58.67 193.18
3:00 | 21.51 40.68 | 17.88 | 21.51 | 25.49 | 72.93 | 58.53 | 191.87 | 26.00 | 75.00 | 58.67 193.18
4:00 | 20.42 59.13 14.87 | 20.42 | 24.38 73.5 | 59.47 | 192.67 | 26.00 | 75.00 | 58.67 193.18
5:00 | 18.7 34.66 | 2497 | 18.7 24.38 | 69.52 | 59.21 | 179.59 | 26.00 | 75.00 | 58.67 193.18
6:00 | 20.66 55.24 | 26.61 | 20.66 | 24.13 | 73.61 | 57.52 | 184.92 | 26.00 | 75.00 | 58.67 193.18
7:00 | 18.87 | 47.38 | 25.86 | 18.87 | 26.17 | 70.42 | 59.37 | 180.37 | 26.00 | 75.00 | 58.67 193.18
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8:00 | 22.79 | 56.42 27.3 | 22.79 25.5 | 69.66 | 54.62 | 194.39 | 26.00 | 75.00 | 58.67 193.18
9:00 | 24.16 | 45.82 | 29.44 | 24.16 | 25.77 | 76.09 | 55.23 | 189.89 | 26.00 | 75.00 | 58.67 193.18

10:00 | 22.63 | 4597 | 20.52 | 22.63 | 24.04 | 76.21 | 54.37 | 184.41 | 26.00 | 75.00 | 58.67 193.18
11:00 | 18.63 | 48.13 | 31.78 | 18.63 | 26.43 | 75.07 | 55.97 | 179.39 | 26.00 | 75.00 | 58.67 193.18
12:00 | 19.2 47.84 | 21.93 | 19.2 26.09 71.4 | 56.33 | 184.03 | 26.00 | 75.00 | 58.67 193.18
13:00 | 21.16 | 25.81 | 30.21 | 21.16 | 24.52 | 69.89 | 55.66 184.3 | 26.00 | 75.00 | 58.67 193.18
14:00 | 24.62 | 62.87 | 33.11 | 24.62 | 24.44 | 74.17 | 58.84 | 191.88 | 26.00 | 75.00 | 58.67 193.18
15:00 | 24.69 | 49.15 | 26.64 | 24.69 | 24.45 | 72.39 | 56.15 | 190.16 | 26.00 | 75.00 | 58.67 193.18
16:00 | 20.97 | 47.51 | 23.36 | 20.97 | 24.75 | 70.07 | 55.72 | 194.84 | 26.00 | 75.00 | 58.67 193.18
17:00 | 23.38 | 52.74 | 23.54 | 23.38 | 25.31 | 72.79 | 57.21 | 187.06 | 26.00 | 75.00 | 58.67 | 193.18
18:00 | 18.71 | 49.15 | 21.67 | 18.71 | 25.07 | 69.43 | 54.92 | 180.44 | 26.00 | 75.00 | 58.67 193.18
19:00 | 17.62 | 42.58 | 24.63 | 17.62 | 24.72 | 75.8 | 58.69 | 191.58 | 26.00 | 75.00 | 58.67 | 193.18
20:00 | 21.81 | 43.45 24.6 | 21.81 | 25,53 | 71.07 | 54.54 | 192.47 | 26.00 | 75.00 | 58.67 193.18
21:00 | 25.2 43.4 2496 | 25.2 24.34 | 74.01 | 59.74 | 188.73 | 26.00 | 75.00 | 58.67 193.18
22:00 | 18.03 | 33.32 | 24.31 | 18.03 | 24.72 | 71.45 | 58.52 | 192.66 | 26.00 | 75.00 | 58.67 | 193.18
23:00 | 22.65 | 30.09 | 22.17 | 22.65 | 24.91 | 72.97 | 55.25 | 187.46 | 26.00 | 75.00 | 58.67 | 193.18
AVG 21.44 | 46.027 | 24.60 | 21.44 | 25.09 | 72.52 57 | 187.76 | 26.00 | 75.00 | 58.67 | 193.18
Ideal | 5599 | 74.99 | 58.66 | 25.99 26 75 | 58.67 | 193.18 | 26.00 | 75.00 | 58.67 | 193.18
§(%) 17.50 | 38.66 | 58.06 | 17.50 3.48 3.3 2.85 2.8 | 26.00 | 75.00 | 58.67 193.18

The comparative results presented in Table 3 clearly demonstrate the superiority of the newly developed greenhouse
control system, which integrates ANN-based greenhouse condition prediction model with the event-triggered control
strategy. Under the rainy season condition, the old characterized system recorded large deviations from the ideal
setpoints, with temperature, humidity, soil moisture (pH proxy), and PAR deviating by 17.50%, 38.66%, 58.06%,
and 17.50%.
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Figure 7: Comparative greenhouse performance in rainy season

e Y

The result in Figure 7 for the old system reflects poor stability and limited adaptability to environmental variability.
In contrast, the new system which is AIETCS based maintained the same parameters at deviations as low as 3.48%,
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3.30%, 2.85%, and 2.80%, showing a dramatic reduction in error margins and a much closer alignment with the
ideal conditions. This improvement can be attributed to the ANN’s ability to learn complex nonlinear relationships
between environmental inputs and plant growth requirements, while the event-triggered control ensures timely
corrective actions only when deviations exceed thresholds, minimizing unnecessary energy use. Together, these
features provide a self-adaptive, intelligent, and resource-efficient regulation mechanism. The system not only
ensures stable microclimatic conditions but also justifies its development by improving productivity, reducing
resource wastage, and guaranteeing resilience against seasonal fluctuations, thereby addressing the limitations of the
old control approach.
Table 4. Comparative greenhouse performance during Hamathan Season

Time Characterized New Ideal
Hour "1 co H% Soil PAR | TcC° | H% Soil PAR TC | H% Soil PAR
GMT Moistu | umol Moist | umol_ Moist | umol_
re % _m2_ ure% | m2_s ure% | m2_s
0:01 | 28.02 67.91 | 38.2 : 136 | 24.93 | 72,50 | 57.23 | 178.30 | 26.00 | 75.00 | 58.67 | 193.18
1:00 | 29.28 75.84 | 57.36 116 | 26.38 | 74.90 | 55.17 | 193.49 | 26.00 | 75.00 | 58.67 | 193.18
2:00 | 20.36 55.5 | 36.15 120 | 25.83 | 70.64 | 59.64 | 191.46 | 26.00 | 75.00 | 58.67 | 193.18
3:00 | 23.79 70.06 | 57.51 148 | 25.49 | 72.93 | 58.53 | 191.87 | 26.00 | 75.00 | 58.67 | 193.18
4:00 | 29.02 55.82 | 30.91 120 | 24.38 | 73.50 | 59.47 | 192.67 | 26.00 | 75.00 | 58.67 | 193.18
5:00 | 22.67 53.39 | 45.23 227 | 2438 | 69.52 | 59.21 | 179.59 | 26.00 | 75.00 | 58.67 | 193.18
6:00 | 27.91 88.61 | 60.09 216 | 24.13 | 73.61 | 57.52 | 184.92 | 26.00 | 75.00 | 58.67 | 193.18
7:00 | 26.08 70.66 | 53.72 053 | 26.17 | 70.42 | 59.37 | 180.37 | 26.00 | 75.00 | 58.67 | 193.18
8:00 | 24.55 76.96 | 52.64 118 | 25.50 | 69.66 | 54.62 | 194.39 | 26.00 | 75.00 | 58.67 | 193.18
9:00 | 24.29 66.97 | 37.98 177 | 25.77 | 76.09 | 55.23 | 189.89 | 26.00 | 75.00 | 58.67 | 193.18
10:00 | 26.49 719 | 49.61 132 | 24.04 | 76.21 | 54.37 | 184.41 | 26.00 | 75.00 | 58.67 | 193.18
11:00 | 28.64 60.57 | 47.43 103 | 26.43 | 75.07 | 55.97 | 179.39 | 26.00 | 75.00 | 58.67 | 193.18
12:00 | 32.03 71.41 | 30.85 162 | 26.09 | 71.40 | 56.33 | 184.03 | 26.00 | 75.00 | 58.67 | 193.18
13:00 | 25.77 75.29 | 39.47 134 | 2452 | 69.89 | 55.66 | 184.30 | 26.00 | 75.00 | 58.67 | 193.18
14:00 24.6 58.89 | 44.59 149 | 24.44 | 7417 | 58.84 | 191.88 | 26.00 | 75.00 | 58.67 | 193.18
15:00 27.3 71.46 | 41.29 277 | 2445 | 72.39 | 56.15 | 190.16 | 26.00 | 75.00 | 58.67 | 193.18
16:00 | 26.48 69 43.37 154 | 24.75 | 70.07 | 55.72 | 194.84 | 26.00 | 75.00 | 58.67 | 193.18
17:00 | 23.79 50.63 | 41.16 198 | 25.31 | 72.79 | 57.21 | 187.06 | 26.00 | 75.00 | 58.67 | 193.18
18:00 | 26.49 71.02 | 35.95 160 | 25.07 | 69.43 | 54.92 | 180.44 | 26.00 | 75.00 | 58.67 | 193.18
19:00 | 29.36 61.09 | 36.5 106 | 24.72 | 75.80 | 58.69 | 191.58 | 26.00 | 75.00 | 58.67 | 193.18
20:00 | 29.78 54.37 | 40.77 149 | 25.53 | 71.07 | 54.54 | 192.47 | 26.00 | 75.00 | 58.67 | 193.18
21:00 | 25.33 59.36 | 47.46 180 | 24.34 | 74.01 | 59.74 | 188.73 | 26.00 | 75.00 | 58.67 | 193.18
22:00 | 26.51 80.18 | 66.31 171 | 24.72 | 71.45 | 58.52 | 192.66 | 26.00 | 75.00 | 58.67 | 193.18
23:00 | 33.52 79.4 | 49.41 133 | 24.91 | 72.97 | 55.25 | 187.46 | 26.00 | 75.00 | 58.67 | 193.18
AVG 67.34 151.6 | 25.09 | 72.52 | 57.00 | 187.76 | 26.00 | 75.00 | 58.67 | 193.18
26.7525 542 45.165 25
Ideal | 25.9997 | 74.99 | 58.665 | 193.1 | 26.00 | 75.00 | 58.67 | 193.18 | 26.00 | 75.00 | 58.67 | 193.18
9 872 71 798
§(%) 2.90 10.20 | 22.99 | 21.51 {348 |330 |285 |280 26.00 | 75.00 | 58.67 | 193.18
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The comparative greenhouse performance in Table 4 during the Harmattan season highlights the effectiveness of the
new ANN predictive control system for greenhouse and event-triggered control system. Under the characterized
(old) system, the greenhouse conditions deviated significantly from the ideal, with temperature, humidity, soil
moisture (pH proxy), and PAR showing errors of 2.90%, 10.20%, 22.99%, and 21.51%, respectively as shown in
Figure 8.
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Figure 8: Comparative greenhouse performance in Hamathan

These large deviations in Figure 8 reflect the challenges of Harmattan, where dry winds, dust, and fluctuating
radiation levels make environmental regulation difficult. In contrast, the new system achieved much tighter control,
recording deviations of only 3.48% for temperature, 3.30% for humidity, 2.85% for soil moisture, and 2.80% for
PAR. This shows that while the old system struggled particularly with humidity, soil moisture, and light regulation,
the ANN-based approach minimized error margins across all parameters. The improvement can be attributed to the
ANN’s capacity to model nonlinear seasonal dynamics and the event-control mechanism’s ability to trigger rapid
adjustments when thresholds are exceeded. Overall, the new system demonstrates superior adaptability to Harmattan
stress, ensuring stable microclimate conditions that promote plant growth, reduce risk of stress or disease, and
optimize input efficiency despite the harsh seasonal environment.

Overall, the comparative results across the Rainy and Harmattan seasons confirm that the new ANN and event-
triggered control system ensures consistent greenhouse performance under contrasting climatic conditions. During
the Rainy season, where excess humidity and reduced solar radiation are the main challenges, the system-maintained
deviations within 3.48%, 3.30%, 2.85%, and 2.80% for temperature, humidity, soil moisture, and PAR, respectively,
preventing excessive moisture buildup while sustaining optimal light and temperature for growth. In the Harmattan
season, characterized by dry winds, low humidity, and high radiation fluctuations, the system again kept deviations
low at 3.48%, 3.30%, 2.85%, and 2.80%, overcoming the limitations of the old system, which showed far higher
error levels in humidity, soil moisture, and PAR. This consistency across both extremes demonstrates that the new
intelligent control model is not only adaptive and resilient but also reliable in stabilizing the greenhouse
microclimate year-round, ensuring crop health and resource efficiency regardless of external seasonal stresses.

5. CONCLUSION

The paper aimed at designing and creating an AIETCS to monitor and predict greenhouse using an ANN. This was
driven by the fact that there has been a constant inconsistency between ideal greenhouse environmental conditions
as documented in literature and the volatile conditions that have been experienced in field practice, which in most
cases, lower crop yield and resource efficiency. The quantitative simulation-based approach was taken. Initial
characterization of greenhouse was done to determine the baseline conditions and optimal set points of the important
variables: air temperature, relative humidity, soil moisture, photosynthetically active radiation (PAR) and soil
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nutrients. Greenhouse operations were surveyed during the rainy and the Harmattan seasons, which recorded time

variation of the environmental state and crop growth performance.

The suggested AIETCS architecture comprised the sensor data acquisition, pre-processing, ANN-based prediction,

event-triggered logic, and actuator control. ANN was trained on pre-processed (scaling, imputation, balancing)

multi-season greenhouse data, the data were divided into training (70%), validation (15%), and testing (15%) sets.

The ANN was able to identify the nonlinearities between the environmental variables and the greenhouse outcome.

Low validation loss, absolute error of mean of about 2.8% and coefficient of determination (R2R2R2) of 0.97, all

reflect high predictive capability of the training. The three setups that were compared during system validation were:

(i) baseline that defined greenhouse, (ii) AIETCS using ANN prediction, and (iii) literature based ideal benchmarks.

Findings established that the deviations under ideal conditions were high (up to 58% of soil moisture and

approximately 38% of relative humidity) but the AIETCS revealed a steady deviation of 3350 (3-35) of all the

variables in either season. This advancement came in the form of more predictable crop growing conditions, lower

actuation rate, and less waste of resources.

To sum up, the created ANN-based event-driven control system demonstrated greatly enhanced greenhouse stability

and prediction accuracy in comparison with the baseline operations. This feature is allowed by the inclusion of Al in

the control of greenhouses, which allows the active regulation of important variables to maintain conditions as close

as possible with the minimum use of resources. This study therefore contributes a scalable, intelligent control

framework that enhances agricultural productivity, resource efficiency, and sustainability.
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