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Wireless Sensor Networks (WSNs) are crucial for various applications, and 
ranking sensor nodes within these networks is a fundamental challenge. 

The Simple Additive Weighting (SAW) approach, a Multi-Criteria 
Decision-Making (MCDM) method, offers a systematic solution to this 
challenge. It considers diverse criteria, including energy, communication 
range, and processing power, enabling the selection of optimal sensor 
nodes. Recent research has extended and improved the SAW method in 
various ways. For instance, fuzzy logic has been applied to address 
uncertainty in sensor node attributes, dynamic weight adaptation has 
enhanced adaptability, and entropy weight assignment has improved 

ranking accuracy. These modifications make the SAW approach even more 
efficient and practical. The SAW method's theoretical foundation involves 
creating a pair-wise comparison matrix to assign weights to criteria. The 
weighted scores are used to construct a decision matrix for sensor nodes, 
and the final ranking is determined through the weighted sum of these 
scores. A case study illustrates the practical application of the SAW 
approach, where sensor A3 is identified as the best choice for a routing 

operation. This outcome demonstrates the SAW approach's effectiveness in 
selecting optimal sensor nodes to ensure optimal performance in WSNs. 
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1. INTRODUCTION  

Wireless sensor networks (WSNs) are a type 

of ad hoc network that consists of a large 

number of sensor nodes that are deployed in a 

specific area to collect data and transmit it to a 

sink node. WSNs have a wide range of 

applications, including environmental 

monitoring, industrial automation, and 

healthcare. One of the key challenges in 

WSNs is to rank the sensor nodes to identify 

the optimal nodes for performing specific 

tasks. This is because the sensor nodes have 

different capabilities and limitations. For 

example, some sensor nodes may have more 

energy than others, while others may have a 

longer communication range. The Simple 

Additive Weighting (SAW) approach is a 

multi-criteria decision-making (MCDM) 

method that can be used to rank the sensor 

nodes in WSNs. The SAW approach takes into 

account the different criteria that are important 

for ranking the sensor nodes, such as energy, 

communication range, and processing power. 

WSNs have a wide range of applications, 

including environmental monitoring (Abbasi 

and Younis, 2007), industrial automation 

(Gungor and Hancke, 2009), and healthcare 
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(Rahmaniet al, 2010).One of the key 

challenges in WSNs is to rank the sensor 

nodes to identify the optimal nodes or 

performing specific tasks (Kumar and Singh, 

2015).This is because the sensor nodes have 

different capabilities and limitations (Singh et 

al, 2016).The SAW approach is a MCDM 

method that can be used to rank the sensor 

nodes in WSNs (Kaur and Kaur, 2016).The 

SAW approach takes into account the different 

criteria that are important for ranking the 

sensor nodes, such as energy, communication 

range, and processing power (Singh et al, 

2017). The SAW approach is a simple and 

effective method for ranking sensor nodes in 

WSNs. It takes into account the different 

criteria that are important for ranking the 

sensor nodes, such as energy, communication 

range, and processing power. The SAW 

approach has been shown to be effective in a 

variety of WSN applications. 

2. REVIEW OF RELATED WORKS 

The SAW approach has been widely used for 

ranking sensor nodes in WSNs in recent years. 

A number of researchers have proposed 

improved versions of the SAW approach to 

address the specific challenges of WSNs. 

Some recent related works on ranking optimal 

sensor nodes in WSN using the SAW 

approach are hereby reviewed. Al-Shammari 

and Hussain (2021) used fuzzy logic to handle 

the uncertainty associated with the sensor 

node attributes. It was shown to be more 

effective than the traditional SAW approach in 

terms of energy consumption and network 

lifetime. Singh and Kumar (2021) used an 

approach that assigned different weights to the 

sensor node attributes based on their 

importance in the specific application. This 

made the ranking process more accurate and 

efficient. Sharma S. and Kumar N. (2022) 

used an approach that combined the SAW and 

TOPSIS methods to rank the sensor nodes. It 

was shown to be more effective than the 

individual SAW and TOPSIS methods in 

terms of accuracy and robustness. In Kumar 

and Saini (2022), their approach adapted the 

weights of the sensor node attributes 

dynamically based on the current network 

conditions. This made the ranking process 

more adaptive and efficient. Zhang et al, 

(2022) applied an approach which used 

entropy weight to assign weights to the sensor 

node attributes. Entropy weight is a measure 

of the uncertainty associated with an attribute. 

The higher the entropy weight of an attribute, 

the more important it is in the ranking process. 

This approach was shown to be more effective 

than the traditional SAW approach in terms of 

ranking accuracy and robustness and also 

more energy-efficient and capable of 

extending the network lifetime. Liet al, (2022) 

used an approach which focused on ranking 

the sensor nodes in a way that minimizes 

energy consumption during data collection. It 

took into account the energy consumption of 

the sensor nodes, the distance between the 

sensor nodes and the sink node, and the 

quality of the data collected. The approach 

was more energy-efficient than the traditional 

SAW approach, while still maintaining a high 

level of ranking accuracy. Khan et al., (2022) 

focused on ranking the sensor nodes in a way 

that maximizes the reliability of data 

transmission. It took into account the 

communication range of the sensor nodes, the 

packet loss rate, and the bandwidth available. 

The approach was more reliable than the 

traditional SAW approach in terms of data 

transmission, while still maintaining a high 
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level of ranking accuracy. Kumar et al, (2022) 

focused on ranking the sensor nodes in a way 

that extends the network lifetime. It takes into 

account the energy consumption of the sensor 

nodes, the communication range of the sensor 

nodes, and the number of hops between the 

sensor nodes and the sink node. The approach 

was capable of extending the network lifetime 

more effectively than the traditional SAW 

approach. 

3. THEORY OF SIMPLE ADDITIVE 

WEIGHTING (SAW) APPROACH 

Simple additive weighting (SAW), often 

known as weighted linear combination or 

scoring systems, is an easy-to-use and popular 

multi-attribute decision-making technique. 

The methodology is built on the weighted 

average. An assessment score is generated for 

each alternative by summing the findings for 

all criteria and multiplying the scaled value 

given to each alternative for that attribute by 

the weights of relative importance directly 

assigned by the decision maker. This method 

has the advantage of keeping the relative order 

of magnitude of the standardized scores by 

proportionately linearly transforming the raw 

data (Alireza et al. 2010). The steps that make 

up the SAW process are as follows: 

Step One 

1. Using the Saaty's pairwise comparison 

1–9 scale presented in table 1, construct a 

pair-wise comparison matrix (n x n) for 

criterion with respect to objective. It is 

utilized, in other words, to compare each 

criterion to each other criterion, one at a time. 

The total number of pairwise comparisons 

(PwC) can be calculated using the 

straightforward formula 

PwC =  
𝑛(𝑛−1)

2
                                             (1) 

where n is the total number of possibilities. 

Thus, if there are 20 possibilities, using 

equation (1) the PwC would be evaluated as 

follows: 

PwC =  
20𝑥(19)

2
  =  

380

2
 190 pairs. Table 1 

outlines the criteria for achieving Saaty's 1-9 

Scale of Pairwise Comparisons. 

Table1: Saaty's 1-9 Scale of Pairwise Comparisons (Source: Alireza et al. 2010) 

Intensity of importance Definition Explanation 

1 Equal Importance The goal is equally benefited by the two activities. 

2 Weak or Slight  

3 Moderate 

Importance 

One activity is marginally preferred over another by 

experience and judgment. 

4 Moderate Plus  

5 Strong Importance One activity is greatly preferred over another by 

experience and judgment. 

6 Strong Plus  

7 Very Strong Strongly favoring one activity over another 

8 Very, very Strong  

9 Extreme 

Importance 

The strongest potential order of affirmation can be 

found in the data supporting one activity over another. 

2. It will be decided which of the two 

criteria is most crucial for each comparison 

and then give it a score to indicate how much 

more crucial it is. 
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3. Each component of the comparison 

matrix should be calculated using its column 

total, and the priority vector should be 

determined using the row averages (Choo and 

Wedley, 2004). 

4. By multiplying the pairwise 

comparison matrix and priority vector, the 

weighted sum matrix is obtained. 

5. Each priority vector element is divided 

by its corresponding weighted sum matrix 

element. 

6. This value's average is then calculated 

to find λmax. 

7. The Consistency Index (CI) is 

calculated as follows:  CI = 
λ max − 𝑛

𝑛−1
          (2) 

   Where n is the size of the matrix. 

8. The following formula is used to 

determine the consistency ratio (CR): 

       CR = 
𝐶𝐼

𝑅𝐼
            (3) 

9. By comparing the consistency ratio 

(CR) of the CI with the relevant value in Table 

2, it is possible to evaluate the consistency of 

judgment. If the CR is less than 0.10, it is 

acceptable. 

If there are more, the judgment matrix is 

flawed. Judgments should be examined and 

strengthened in order to achieve a consistent 

matrix. 

Table 3: Average Random Consistency (RI) 

(Source:Alireza et al. 2010) 

Matrix Size  Random Consistency  

1 0 

2 0 

3 0.58 

4 0.9 

Cont. Table 3: Average Random 

Consistency (RI) 

5 1.12 

6 1.24 

7 1.32 

8 1.41 

9 1.45 

10 1.49 

Step Two 

Create a decision matrix (m n) with m sensors 

and n criteria. Make a decision matrix that is 

normalized for positive criteria: 

nij = rij 

r*
j    , i = 1,…, m; and j = 1,…, n.           (4) 

For negative criteria, it becomes 

nij = rj
min 

rij     ,  i = 1,…, m and j = 1, …, n.             (5). 

rj
* is the minimum number of r in the r column 

of j. 

Step Three 

Finally, evaluate the value of each alternative, 

denoted as Ai, using the following formula 

Ai = ∑ 𝑤𝑗. 𝑋𝑖𝑗              (6) 

Where xij denotes the value for the score of the 

ith alternative with regard to the jth criteria, 

and wj denotes the weighted criteria 

(Asgharpour, 2008). The steps given in the 

foregoing are generalized for use when 

carrying out the SAW method. 

Multi-attribute decision-making strategies 

most frequently employ the SAW model 

which is also known as Scoring Method (SM). 

To do this, the weight of the criteria must be 

multiplied by the normalized value of the 

criteria for the alternatives. The best option 

with the highest score is then chosen as the 

preferred option (Janic and Reggiani, 2002). 

The SAW method's analytical framework for 

N alternatives and M attributes can be 

summed up as follows: 

Si = ∑ 𝑊𝑗𝑟𝑖𝑗                 𝑖 = 1,2, … , 𝑁𝑀
𝑗=1        (7) 

Where si is the total score of the ith 

alternative;   

rij is the normalized rating of the ith 

alternative for the jth criterion which: rij= 
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𝑥𝑖𝑗

𝑚𝑎𝑥𝑖 𝑥𝑖𝑗
   for the benefit; rij = 

1
𝑥𝑖𝑗⁄

𝑚𝑎𝑥𝑖1
𝑥𝑖𝑗⁄

  for the 

cost criterion signifying a component for the 

normalized matrix; xij is an element of the 

decision matrix, representing the original 

value of the jth criterion of the ith alternative; 

wj is the importance (weight) of the jth 

criterion;  N and M are the number of 

alternatives and criteria, respectively. The 

essential idea of finding a weighted sum of the 

performance on each alternative for each 

attribute constitutes the nucleus of the simple 

additive weighting method. Simple Additive 

Weighting approach recommends concluding 

a settlement in the multi-process decision-

making system. The decision maker just 

selects the alternative that has the greatest 

number of good characteristics, according to 

the simple additive rule. By introducing the 

weighted average utilizing the arithmetic 

mean, SAW uses a weighted linear 

combination or scoring system. The product of 

the scaled value for an attribute assigned to 

each alternative and the respective weights 

results in an assessment score for each 

alternative. The relative order of magnitude of 

the standardized scores stays constant because 

SAW is acknowledged as a proportional linear 

modification of the raw data. Getting a 

weighted sum of performance ratings for each 

alternative across all qualities is the main goal 

of the SAW approach (Kim et al. 2019). 

4. METHODOLOGY 

The three sensors identified as A1, A2 and A3 

are the alternative sensors with several 

attributes ascribed to them. To achieve this 

objective, the Simple Additive Weighting 

(SAW) technique which is the preferred 

technique was used. The process of this 

ranking, which draws much inference from the 

theory of the technique used, already 

discussed extensively in chapter two, is 

presented in the following discuss. The 

MADM process was performed using three 

stages: 

1. Preparation of the situation 

components. 

2. Analysis. 

3. Information synthesis. 

For the purpose of this identification, three 

sensors were used and identified as Sensor A1, 

Sensor A2 and Sensor A3. 

Three steps were applied in the SAW method 

as follows: 

a. Specifying the criteria to be used as a 

reference for making decision. 

b. The suitability of each alternative is 

determined by the rating on each criterion. 

c. Decision is taken based on the 

outcome of the criteria matrix after which 

normalization of matrix R depending on the 

equation adjusted for the attribute type takes 

effect. 

Table 4: Empirical data 2 

A1 Sensing power 

A2 Communication range 

A3 Packet loss 

 A1 Sensing power 

Table 5: Sensing power, category and value 

Sensing power      Category Value 

0.5w – 3.5w Good 50% 

3.6w – 5.5w Better 75% 

5.6w – 8w Best 98% 

 A2 Communication range 

Table 6: Communication range, category 

and value 

Communication range      Category Value 

1m – 45m Good 50% 

46m – 75m Better 75% 

76m – 100m Best 98% 

 A3 Packet loss 
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Table 7: Packet loss, category and value 

Packet loss (kb/s) Category Value 

76 – 100 Good 50% 

46 – 75 Better 75% 

1 – 45 Best 98% 

 To find the best sensor that will 

sense a target fast among all the 

sensors. 

Table 8: Identification for the best sensor 

Name Sensing ability Routing 

value 

Sensor 1 Good 80kb/s 

Sensor 2 Better 100 

Sensor3 Best 250 

Sensing 

time 

Sensing power      Sensing 

range 

covered 

5s 5w 45m 

3s 3.5w 75m 

2s 2w 100m 

Any one that loses 5% in the routing value to 

get packet loss is bad. 

 To determine the weight of the 

criteria 

Table 9: Determination of weight of the 

criteria 

 Criteria  Weight  Numerical 

value 

C1 Routing value Better 0.75 

C2 Sensing time Best 0.98 

C3 Sensing power      Good 0.5 

C4 Sensing range 

covered 

Best 0.98 

Table obtained by the weight value with the 

data is presented in the form shown in 

equation (8): 

W = [0.75, 0.98, 0.5, 0.98]         (8) 

Then, using Simple Additive Weighting 

(SAW) method, the following procedure was 

adopted. 

 First determine the name of the 

sensors as an alternative 

Table 10: Determination of the Name of the 

Sensor as an Alternative 

Name Alternative 

Sensor1 A1 

Sensor2 A2 

Sensor3 A3 

Since the alternative is determined, make the 

rating the suitability of each alternative on 

each criterion. 

Table 11: Rating the Suitable of each 

Alternative on each criterion. 

 C1 C2 C3 C4 

A1 0.75 0.75 0.5 0.75 

A2 0.5 0.75 0.5 0.75 

A3 0.75 0.5 1 1 

From the table above the decision matrix 

obtained is as follows: 

 

0.75       0.75       0.5     0.75    

                X =              0.5          0.75      0.5     

0.75                                                  (3.4) 

                                   0.75         0.5         

1         1 

 

To normalize the matrix X into matrix R take 

the weights of the criteria W and multiple by 

the matrix X. Meanwhile the calculation of 

matrix R requires the classification criteria of 

value added benefit or cost 

Table 12: Classification criteria of value 

added benefits or costs 

Criteria Benefits Cost 

C1 Routing value Available  Not Available 

C2 Sensing time Available Not Available 

C3 Sensing power Available Not Available 

C4 Sensing range 

covered 

Available Not Available 
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Computation of Ranking and Results 

In compliance with the criterion by which all 

the criteria are included in the benefits, the 

calculation to normalize the matrix X becomes 

as follows: 

R11 = 
0.75

Max(0.75,0.5,0.75 )
 = 

0.75

0.75
 = 1 

R21= 
0.5

Max(0.75,0.5,0.75 )
 = 

0.5

0.75
 = 0.67     

R31= 
0.75

Max(0.75,0.5,0.75 )
 = 

0.75

0.75
 = 1 

R12 = 
0.75

Max(0.75,0.5,0.75 )
 = 

0.75

0.75
 = 1 

R22 = 
0.75

Max(0.75,0.5,0.75 )
 = 

0.75

0.75
 = 1 

R32= 
0.5

Max(0.75,0.5,0.75 )
 = 

0.5

0.75
 = 0.67 

R13 = 
0.5

Max(0.5,0.5,1 )
 = 

0.5

1
= 0.5 

R23= 
0.5

Max(0.5,0.5,1)
 = 

0.5

1
 = 0.5 

R33 = 
1

Max(0.5,0.5,1 )
 = 

1

1
 = 1 

R14= 
0.75

Max(0.75,0.75,   1 )
= 

0.75

1
= 0.75 

R24= 
0.75

Max(0.75,0.75,1 )
 = 

0.75

1
 = 0.75 

   R34 = 
1

 Max (0.75,0.75,1)
 = 

1

1
 = 1 

The matrix obtained from the computation 

becomes 

  1               1            0.5    0.75 

           R=            0.67          1           0.5     0.75 

 1              0.67        1           1 

 

Furthermore, the ranking process is done by 

the sum of the normalized R matrix 

multiplication with the weight vector. The 

ranking result in the Table 13. To find the best 

sensor. Best sensor = ∑weight x R 

W = [0.75, 0.98, 0.5, 0.98] 

A1 = [(0.75 x 1) + (0.98 x 1) + (0.5 x 0.5) + 

(0.98 x 0.75)] 

A1 = [0.75 + 0.98 + 0.25 + 0.735] 

A1 = 2.715 

A2 = [(0.75x0.67)+ (0.98x 1) + (0.5x0.5) + 

(0.98x0.75)]    

A2 = [0.5025 + 0.98 + 0.25 + 0.735] 

A2 = 2.4675 

A3= [(0.75x1)+ (0.98x0.67) + (0.5x 1) + 

(0.98x 1)]         

A3= [0.75+0.6566+ 0.5+0.98] 

A3= 2.8866 

Table 13: Ranking result 

Alternative Value Ranking 

A1 2.715 2  

A2 2.4675 3 

A3 2.8866 1 

The best sensor among the sensors is sensor 

A3. From the results of the computation 

exercise in the ranking process, sensor with 

the highest value is A3 thereby presenting it as 

the best sensor for use in the present routing 

operation in the network to ensure optimal 

operational performance. 

5. CONCLUSION 

In conclusion, the Simple Additive Weighting 

(SAW) approach is a powerful method for 

ranking sensor nodes in Wireless Sensor 

Networks (WSNs). It provides a systematic 

way to evaluate and select the most suitable 

sensor nodes based on multiple criteria, such 

as sensing power, communication range, and 

packet loss. The SAW method is effective in 

handling complex decision-making processes 

and has been further improved by recent 

research, incorporating techniques like fuzzy 

logic, dynamic weight adaptation, and entropy 

weight assignment. By assigning appropriate 

weights to criteria and normalizing the 

decision matrix, SAW enables decision-

makers to determine the optimal sensor nodes 

for specific tasks. The case study presented in 

this paper demonstrates the practical 

application of the SAW approach, where 
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sensor A3 was identified as the best choice for 

a routing operation, ensuring optimal 

performance. In essence, the SAW approach 

offers a valuable framework for enhancing the 

efficiency and effectiveness of WSNs by 

facilitating the selection of sensor nodes that 

align with the specific requirements of various 

applications. Its simplicity and effectiveness 

make it a valuable tool for network designers 

and decision-makers in the field of wireless 

sensor networks. 
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