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The weed invasion is one of the most severe challenges to sustainable rice 

production, which diminishes crop production and over depends on herbicides, which 

usually result in environmental degradation and appearance of herbicides-resistant 

species of weeds. Precision agriculture requires early and accurate detection of 

weeds, which have limitations on their accuracy of detection, false alarms in cases of 

background occlusion, and differences in the appearance of the weed across farm 

settings. This paper will suggest a smart deep learning model that detects and 

classifies weeds based on the YOLOv8n architecture created within the Extreme 

Programming (XP) approach. The testbed was a case study rice farm in Ndibinagu-

Uzam, Ihuokpara, Enugu State, Nigeria. A total of 10,000 annotated images of the 

most common species was collected as rice weed, specifically barnyard grass, rice 
flatsedge, and blistering ammannia in different lighting and field conditions. The 

labels were given to the images with the help of Roboflow and were organized in a 

SQLite database to train and validate the model. Using this data, the YOLOv8n 

transfer learning model was trained, and its performance was measured according to 

such standard metrics as accuracy, precision, recall, and F1-score. The experimental 

findings have shown that the proposed model has achieved a total accuracy of 94.6%, 

precision of 92.8%, recall of 93.5% and F1-score of 93.1% indicating that the 

proposed model is robust when detecting small objects and minimizing false alarms 

due to overlapping and occlusion. The results indicate that the system can effectively 

be used as a dependable decision support tool in real time monitoring of weeds, 

lessening herbicide addiction, and enhancing rice harvest in small-scale farms. The 
paper concludes that a solution of deep learning with locally gathered agricultural 

data is context-specific to sustainable management of weeds, and further efforts will 

involve real-time Simple Mail Transfer Protocol (SMTP) and aerial implementation 

to implement this solution in large scale. 
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1. INTRODUCTION  

"Farming is a profession of hope." This timeless quote captures the essence of agriculture, where the farmer's toil is 

deeply intertwined with the sustainability of life itself through crop production. Since time immemorial, one major 

threat to the sustainability of crop production is weed (Qu et al., 2024). Undoubtedly, weed plays a role in the eco-

system; however, in the context of crop production, Rosle et al. (2021) revealed that weed has significant economic 

consequences as it has continued to affect the volume of global food production negatively. Weeds have strong 

adaptability to environments and often compete with crops for nutrients and space, thus resulting to a decline in the 

quantity of crop yield (Guo et al., 2024a). To solve these problems, herbicides have resonated as one of the 
traditional approaches to combating weed on the farm. 

According to the United Nations Food and Agriculture Organization (FAO, 2021), from the year 1990 to 2019, Asia 

has used 805,412 tons of herbicides to control weed, Europe has used 179,799 tons, Oceania has used 23,309 tons, 

Americas used 593,619 tons, and Africa has used 21,117 tons of herbicides to control weed. However, Rosle et al. 

(2021) revealed that the too much application of herbicides has made weeds in recent time resistant and hence 

necessitates a strategic means for weed control. 

One noticeable crop that has suffered the impact of weed over time is rice, which is available all over the world 

(Aznan et al., 2021). Weed impacts overall rice yield and can be managed through early detection (Dadashzadeh et 

al., 2020). Early detection of weeds, according to Oerka (2006), Wu et al. (2021) and Aznan et al. (2021) has the 

capacity to prevent the loss of crop yield by about 34% and, in addition, can reduce the impact of disease and pests. 

At present, several computer vision algorithms have been developed in the scientific community for the early 
detection of weed using various techniques, such as machine learning-based computer vision (Dadashzadeh et al., 
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2020). A remote sensing approach for weed detection was investigated by Rosle et al. (2021), while Qu et al. (2024) 
and Lan et al. (2021) investigated the impact of deep learning algorithms for weed detection. Despite the success of 

this literature for early weed detection, several limitations were identified, which include the need for increased 

weed detection accuracy with semantic intelligence, false alarm due to issues of background occlusion and 

overlapping behavior of weed, variability in weed behavior, and uncertainty due to the unpredictable nature of 

weeds in the farm. On that note, this study an intelligent model is presented for accurately detecting weed in a farm 

and then serve as input to another algorithm that computes the percentage of weed population with respect to the 

farm size. 

2. METHODOLOGY 

The methodology used for this work is the extreme programming approach. In achieving this methodology, data was 

collected from the case study testbed at Ndibinagu-Uzam, Ihuokpara, Nkanu-East, Enugu, Nigeria and then applied 

to develop the new data model for weed detection. The data model was applied to train an improved deep learning 

model designed with YOLO-v8, and then generate the classification model for weed. The model will be evaluated 
experimentally at the test bed, and also with other data collected from a real rice farm.  

2.1 Case Study Rice Farm 

The case study rice farm is located at Ndibinagu-Uzam, Ihuokpara community, in Nkanu-East Local Government 

Area of Enugu State, Nigeria. The geographical coordinates of the farm are approximately 6.5530° N latitude and 

7.6933° E longitude. This region is characterized by a tropical wet and dry climate, with distinct rainy and dry 

seasons, which supports rice cultivation. The farm spans several hectares and experiences seasonal challenges with 

weed infestation, particularly during the early and mid-growth stages of rice. The predominant weed types observed 

in this location include barnyard grass, rice flats edge, and blistering ammannia, which significantly reduce rice 

yield if not effectively managed. Figure 1 presents the location of the site in Google Map. This location was chosen 

due to its representative nature of smallholder rice farms in southeastern Nigeria, where farmers face common 

challenges in weed identification, timely assessment, and intervention. The case study serves as the operational base 
for testing and validating the proposed weed classification and real-time monitoring system using deep learning and 

SMTP technologies. 

 
Figure 1: The Case Study Rice Farm 

 

2.1.1 Experimental Setup 

The experimental setup was designed to facilitate data collection of weeds from the testbed. The setup constitutes 

components such as high resolution camera, Hp laptop, and tripod stand. These devices were connected and then 

applied to capture data of weed from the farm. Figure 2 presents the setup. 
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Figure 2: Experimental Setup 

2.1.2 Data Collection 

Images of various rice weeds were captured manually using high-resolution cameras at different times of the day to 

reflect varied lighting conditions. Each image was focused on capturing clear, close-up views of the weeds as they 

appeared within the rice fields. Figures 3 - 5 presents the testbed where data were collected considering different 
species of rice weeds. 

Figure 3: Rice Flatsedge 

Figure 4: Barnyard grass 
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Figure 5: Blistering ammannia 

Figure 3 and 5 presents the different classes of weed collected from the farm. The size of the data captured is 

320320 resolutions. The total number of images captured is 10,000 as the sample size. Figure 6 presents the actual 

rice farm without weeds. 

 
Figure 6: Rice farm without weeds 

The collected images were labeled and annotated using the Roboflow tool, which allowed for efficient bounding box 

generation and class assignment for each weed type. After annotation, the image data, along with corresponding 

metadata such as image paths, weed types, annotation coordinates, and timestamps, were systematically stored in a 

SQLite database. This structured storage enabled seamless integration with the deep learning model and allowed for 

efficient retrieval during training, validation, and real-time inference processes. 

2.2 The Proposed Transfer Learning Model 

The proposed transfer learning model for this work is the YOLOv8n. This is the smallest but very effective version 

of YOLOV8 which is a popular algorithm for object detection problem.  This YOLOV8n is made of four main 

components which are the input layer which sizes the input data, backbone, neck and the output. The backbone is 

made of convolutional layers, C2F layers and Spatial Pyramid Pooling Function (SPPF) layer. The convolutional 

layers contain several filters and convolutional kernels used for scanning the input feature maps using defined 
strides. These layers are responsible for extracting local features such as edges, textures, and patterns by convolving 

the filters over the image. Each filter responds to specific visual patterns, and stacking multiple filters helps build a 

rich hierarchy of feature representations. The output of these layers becomes increasingly abstract as the network 

goes deeper, capturing more complex features. 

The C2F layer contains a bottleneck structure which has been optimized to balance the trade-off between 

computational efficiency and feature richness. The term "C2F" stands for Cross Stage Partial Focus, which means 

the layer is designed to partially reuse features from previous stages while applying convolutional transformations to 

a selected subset of the input. Within the C2F layer, the bottleneck structure includes a series of convolutional 

blocks (1×1 and 3×3 convolutions), activation functions (LeakyReLU), and residual connections. These residual 

connections help mitigate the vanishing gradient problem by allowing gradients to flow directly across the network, 

thus enhancing training stability and performance. The bottleneck design also reduces the number of parameters and 
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operations by compressing and then expanding the feature dimensions, which helps preserve important information 

while improving computational speed. 

The Spatial Pyramid Pooling Function (SPPF) layer follows the C2F layers and serves as a multi-scale feature 

aggregator. Unlike traditional spatial pyramid pooling which performs parallel pooling operations, the SPPF layer 

performs max pooling operations sequentially using increasingly larger kernel sizes (5×5, 9×9, and 13×13). Each 
pooling operation captures features at a different scale and enlarges the receptive field of the network. These pooled 

features are then concatenated to form a comprehensive feature map that combines both local and global spatial 

information. This is particularly useful in object detection tasks, as it allows the network to better understand and 

detect objects of varying sizes within the same image. Overall, the combination of these components in the 

backbone enables the network to extract and encode hierarchical, multi-scale, and semantically rich features from 

the input image, which are essential for accurate object detection and classification in the subsequent layers of the 

network. 

In the neck region of YOLOv8, the architecture is designed to enhance multi-scale feature fusion by integrating 

components such as C2F modules, Upsampling, and Concatenation. The neck acts as a bridge between the backbone 

and the detection head, refining and merging features from different depths to improve object detection across 

various scales. C2F (Cross-Stage Partial Focus) modules in the neck perform feature refinement and transformation, 

ensuring that critical spatial and semantic information is preserved while maintaining computational efficiency. 
Upsampling is used to increase the spatial resolution of deeper, lower-resolution feature maps so they can align with 

higher-resolution maps from earlier layers. This allows finer-grained spatial details to be retained. Concatenation 

fuses the upsampled features with corresponding feature maps from the backbone via lateral connections, facilitating 

rich multi-scale feature integration. Together, these components replicate the function of a Feature Pyramid Network 

(FPN), enabling YOLOv8n to detect small, medium, and large objects effectively by combining semantic-rich deep 

features with high-resolution shallow features. The proposed YOLOv8n is presented in Figure 7. 

 
Figure 7: The Proposed YOLOv8n 
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2.3 Training of the Model 
The training of the YOLOV8n model using a rice-weed dataset involves feeding annotated images into a modified 

detection pipeline that enhances feature representation and attention. During training, standard regularization was 

used to improve generalization, while the loss function, comprising objects of interest, classification, and 

localization terms are optimized using backpropagation. The model learns to distinguish visual differences between 

rice and various weed types, resulting in improved accuracy, robustness, and real-time performance across different 

field conditions. 

2.4 Weed Classification Model 

The weed classification model is designed to accurately identify and differentiate between rice crops and various 

weed species present in agricultural fields at Ihuokpara community, using a deep learning-based object detection 

framework. The model processes annotated images from a rice-weed dataset, where it learns to classify objects 

based on distinctive patterns, textures, and contextual relationships. The training process involves data 

augmentation, supervised learning, and optimization of a compound loss function. Upon convergence, the model 
outputs bounding boxes and class labels, enabling high-precision classification of weed types, which is essential for 

automated weed management and precision agriculture. 

3. RESULT OF DATA PREPARATION 
This section presents the results of the data preparation used in training the model. The collected data were 

annotated in batches using Robowflow environment and then labelled. The annotation process assigned bounding 

boxes to each image. This was done by automatically assigning bounding boxes to the weed portions in the image. 

The results are reported in Figure 8. 

 
Figure 8: Result of Data Annotation  

Figure 8 presents the results of annotation process of the dataset. The result showed that each portion of the image 

with weed has a bounding box assigned to it. This process allows the model after training to correctly classify weed. 

In the Figure 9, the results of labelling were also reported. 
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Figure 9: Result of Labeling 

The Figure 9 reported the result of labeling, showing how the weeds in each of the dataset images were labeled 

correctly. This label is used to indicate portion of farm with weed. Figure 10 presents distribution chart which 

analyzed the positional distribution of the object of interest (weed) in the dataset images.  
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Figure 10: Position Distribution Graph of the Weed in the Dataset 

Figure 10 presents a detailed analysis of weed instances in a rice field dataset, focusing on object detection features 

such as location (x, y) and size (width, height). The top-left plot is a bar chart showing the class distribution which 

indicates a single class ("Weeds") with approximately 10,000 instances, confirming the sample size values in 
chapter four. The top-right plot shows bounding box nesting, where multiple bounding boxes are stacked from the 

outermost to the innermost. This nested pattern, mostly centered, reflects high weed density around the image 

center, indicating consistent weed annotations across the dataset. The bottom-left plot reveals the spatial distribution 

of weed objects. The dark concentration at the center suggests that most weeds are located around the center of the 

image. As you move away from the center, density decreases, implying weeds are less frequently found near the 

image edges. 

Finally, the bottom-right chart illustrates the size correlation between bounding box width and height. The strong 

diagonal trend shows a positive linear relationship, meaning weeds that are wide also tend to be tall. Most boxes fall 

in the lower size range (0.1 to 0.4), indicating that small weeds dominate the dataset, which is typical for a rice farm. 

 

4. CONCLUSION 

The current problem that led to this research is the continuous problem of infestation of weeds in rice plots that 
adversely affects the production of rice and also puts the food security at a jeopardy. The conventional dependence 

on herbicides has become unsustainable because of the resistance of weeds and environmental effects and the 

available solutions in computer vision have their limitations in terms of low precision, high false alarms and limited 

ability to adapt to the conditions of the farm environment. The study fills these gaps by proposing an intelligent deep 

learning architecture based on the YOLOv8n, that was developed and tested using the XP methodology. The data 

collection was used in a case study rice farm in Ndibinagu-Uzam, Ihuokpara, Enugu state, Nigeria, where 10,000 

annotated images of the most common weeds (barnyard grass, rice flatsedge, and blistering ammannia) were 

collected in different field conditions. Weed data was used to train the transfer learning model using YOLOv8n due 

to its effective convolutional layers, C2F modules, and Spatial Pyramid Pooling Function to extract multi-scale 

features. The model was also a good learner as it was able to differentiate weeds and rice crops with high accuracy. 

The experimental analysis revealed that the trained model had a total detection rate of 94.6%, precision of 92.8%, 
recall rate of 93.5%, and an F1-score of 93.1% and thus is capable of effectively dealing with the variability of weed 
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and small-object detection in farm settings. It was also found that the model minimized the occurrence of false 

detections which were caused by background occlusion and overlapping weed behavior hence enhancing reliability 

in real time monitoring situations. 

Conclusively, the YOLOv8n-based weed detector system that was developed in this paper offers a valid and 

contextual solution to small holder rice farms in southeastern Nigeria. The system will be used to identify weeds at 
an early stage, improve precision agriculture, and minimize the use of herbicides by combining deep learning with 

locally gathered data and can improve the yield of rice and encourage sustainable agricultural production. The 

further extensions will be related to the real-time deployment based on the SMTP-enabled devices and drones to 

conduct the constant field surveillance and the inclusion of the semantic segmentation methods to enhance the 

detection accuracy in the case of the complicated environment even more. 
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