
International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 793

CRITICAL STUDY OF THE OOP, FEATURES, IMPLEMENTATION AND ATTRACTED STRENGHTS TO

JAVA PROGRAMMING LANGUAGE

P.E. Kekong 1*, Ewhenke B. Kekong2, Michael E. Ekpo3,

1Federal Univerity of Health Sciences, Otukpo Benue State, Nigeria
2University of Uyo teaching hospital, Uyo Akwa Ibom State. Nigeria

3Department of Computer Science, Ebonyi State University, Abakaliki, Nigeria

1*
piuskekong2019@gmail.com, 2bettyreal2014@gmail.com, 3ekpom550@gmail.com,

Corresponding Author’s Email and Tel: piuskekong2019@gmail.com ; +234 808 521 1771

Abstract

The Java programming language's Object-Oriented Programming (OOP) characteristics are

thoroughly examined in this paper, along with their benefits and drawbacks. The cornerstone for

creating reliable, scalable, and maintainable software systems is Java's commitment to fundamental

OOP principles like encapsulation, inheritance, polymorphism, and abstraction. Modularity and data

security are improved by encapsulation, and the effective creation of complex systems and code

reuse are encouraged by inheritance. Flexibility and extensibility provided by polymorphism allow

for simplified code management and dynamic method binding. Although abstraction may lead to an

increase in complexity and development overhead, it makes it easier to create modular systems and

clear interfaces. While these OOP capabilities add a lot of value to Java, the study also notes that

there are drawbacks, including performance overhead, debugging difficulty, and the possibility of

developing tightly connected systems. The results highlight how crucial it is to apply OOP principles

in a balanced way in order to fully utilise Java's potential for creating efficient and maintainable

software solutions. The purpose of this analysis is to shed light on how Java's OOP features can be

used wisely to create software that is more reliable and efficient.

Keywords: OOP; Java; Encapsulation; Polymorphism; Inheritance; Abstraction

1. INTRODUCTION

Algorithm design, coding, testing, debugging, and

implementation are all part of programming. Problem-

solving skills and computer programming are closely

related, but at the foundational level, students are not

expected to solve complex problems; instead, they

should begin by learning the fundamentals in order to

develop a higher level of cognitive understanding and

possibly a better understanding of more advanced

programming concepts. Finding various ways to present

and solve programming challenges is part of the

challenge of helping students grasp programming

principles. Making the switch from one programming

paradigm to another, like procedural to object-oriented

programming (OOP), can be difficult because there are

a lot of concepts that overlap [8].

Programmers quickly discovered that groups of related

functions that handle a large amount of data into logical

groups makes a programme easier to read and run. This

kind of combination of data and functions is called

class and object grouping. Additionally, creating

programmes with classes is known as object-oriented

programming [11].

Since the objects in the OOP problem domain are

related to real-world items, the OO paradigm is thought

to be a more natural domain to deal with [4]. However,

it can be very tough and demanding for students to

comprehend and relate the fundamental ideas of object-

oriented programming (OOP)such as classes, objects,

 Volume 4, Issue III, March, 2025, No. 62, pp. 793-801

Submitted 1/3/2025; Final peer review 30/3/2025

Online Publication 6/4/2025

Available Online at http://www.ijortacs.com

mailto:piuskekong2019@gmail.com
mailto:bettyreal2014@gmail.com
mailto:ekpom550@gmail.com
mailto:piuskekong2019@gmail.com

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 794

attributes, methods, method passing, inheritance,

polymorphism, and encapsulation to real-world

situations [21].Object-oriented programming is

designed to apply real-world ideas in programming,

such as inheritance, hiding, and polymorphism. The

main objective of OOP is to connect the functions that

manipulate the data with the data itself so that only that

function and no other part of the code can access the

data.

Eliminating some of the procedural approach's

shortcomings served as the primary driving force for

the development of the object-oriented approach. OOP

restricts the free flow of data across the system and

views it as a vital component of programme

development. It safeguards data from inadvertent

alteration by external functions and strengthens the link

between the data and the functions that use it. With

OOP, an issue can be divided into several things known

as objects, and data and functions can then be built

around these objects. Figure 1 illustrates how data and

functions are arranged in object-oriented programmes.

A function that is linked to an object is the only way to

access its data. Nonetheless, Nzerue-Kenneth et al. [16]

state that the function of one object can access the

function of other objects.

Figure 1: Organization of data and function in OOP

2. LITERATURE REVIEW

[20] researched on the basic concept of object-oriented

programming. Object-oriented programming, or OOP,

has become more widely used in software because of its

potential to develop the software business and advance

software engineering. In order to study object-oriented

programming in depth, it is necessary to be aware of

some crucial features. This study covers the concept of

object-oriented programming, including its features,

benefits, and drawbacks, as well as the constructor and

destructor concepts. Software development is shown to

rise with the use of features like classes, objects,

encapsulations, polymorphism, inheritance, and

abstraction.

[16] presents a detailed study on the features of object-

oriented programming in python. The paper claims that

OOP was created in order to get around the drawbacks

of procedural programming. Because new objects in

Python are formed by inheriting properties from

existing ones, OOP makes maintenance and change of

existing code easier. Because OOP enables the

developer to safeguard Python's important data pieces,

it is more secure. One way to achieve this is to limit

access to data to only those methods that are part of that

specific object; this is known as abstraction.

Furthermore, OOP's programme modularity makes it

easier to generate new data items from pre-existing

ones, which reduces complexity. Adapting object-

oriented programming is made simple by this idea.In

order to create complete and well-designed Python

software solutions, it is essential to grasp OOP

thoroughly.

[18] surveyed on the concepts of object oriented

programming. This examination delves deeply into

several OOP topics that are fundamental to object-

orientation. In this review article, the concepts,

significance, and uses of object-oriented programming

(OOP) are extensively discussed. For building complex

systems, the modular, reusable, and maintainable OOP

design style is perfect. It uses inheritance to promote

code reuse, polymorphism to allow objects to exhibit

alternative behaviours, abstraction to lessen complexity,

and classes to contain information and functions.

Different aspects of inheritance and polymorphism are

implemented by numerous popular object-oriented

programming languages. We conclude that in order for

them to achieve OOPs features, a great deal of work

needs to be done to establish a medium ground.

[14] Researched on the concepts of object-oriented

programming. This study on Object Oriented

Programming has been the fields of the Software

Development. This study covers some of the most well-

known and extensively used object-oriented

programming languages as well as the principles and

ideas behind OOP. The distinction between procedure-

oriented and object-oriented programming was also

covered. Benefits and Drawbacks of Object-Oriented

Coding Despite a few drawbacks, object-oriented

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 795

programming (OOP) has many benefits and is

effectively used in a wide range of software industry

domains, including the internet, robotics, gaming, and

scientific applications. Encapsulation, polymorphism,

inheritance, abstraction, and classes are examples of

OOP elements that can be used to construct real-time

projects and products more effectively.

[1] researched on the gauge of OOP for student’s

learning performance, impacts on normalized learning

and perceived motivation with Serious Games (SG).

The goal of this study is to create a successful SG

prototype that will help students overcome their

obstacles and misconceptions when studying OOP. To

compare the performance of the students in the

experimental group who engage with the created game

and the control group who receive instruction using the

conventional approach, an experimental evaluation was

conducted. The primary conclusion drawn from the

experimental assessments is that the experimental group

outperforms the control group in terms of performance.

Normalised Learning Gain (NLG) for the experimental

group is considerably larger than that of the control

group (p < 0.005, paired t-test).According to the

evaluation study's findings, the produced prototype's

perceived motivation scored highest for attention (3.87)

and relevance (3.66) subcategories on the Instructional

Materials Motivation Survey (IMMS) 5-point Likert

scale.

[18] presents the study on benefits of applying OOP for

objective evaluation of vehicle dynamic performance in

concurrent simulations. This work focuses on a C++

simulation environment that has been customised to

take advantage of object-oriented programming

features. Concurrent simulations of automobiles with

various attributes, including mass, tyres, engines,

suspension, and gearbox systems, are the goal of the

framework that is being described. We used a modular

and hierarchical representation in the suggested

simulation framework. A full-vehicle model with 14

degrees of freedom (DOF) is used to model vehicles. It

can capture the dynamics of the vehicle and is

supplemented by a series of scalable-detail models for

the other subsystems, including the engine, steering

system, and tyres. Additionally, the use of autonomous

virtual drivers is suggested in this paper for a more

impartial assessment of the dynamic performances of

vehicles. Additionally, in order to gauge the

effectiveness of our simulator architecture and the

degree of concurrency attained, the researchers built a

benchmark that could measure how performance scaled

in relation to the number of cars used in a given

simulation. The study concludes by reporting on the

scalability of the suggested simulation environment as a

result of a variety of distinct and variable driving

scenarios.

[22] Presents an educational software quality

assessment tool for java called SQMetrics. The

SQMetrics application's primary goal is to meet

academic or research demands by offering the

convenience of measuring small code, rather than to

compete with currently available commercial products.

Within this context, the programme is easily used by

teachers to assess students' Java projects, which are

assessed according to quality, as well as by software

engineering students to make measurements and

comparisons in their projects with the goal of

improving the indicators measured. Since feedback is

crucial for helping students in software engineering

education to better their work, SQMetrics can be used

to offer unbiased comments on the calibre of software

projects. Furthermore, tests and analyses were

conducted to determine the effectiveness of SQMetrics

as an Android Antenna Tool (AAT) for evaluating the

quality of Java code. The software tool can be a

trustworthy and accurate assistance to teacher grading,

as evidenced by the results, which revealed a positive

association between instructor rating and the overall

quality index generated from the programme.

3. RESEARCH METHODOLOGY

The investigation will be conducted using a qualitative

research technique. The goal of qualitative research

methods is to gather information that is often difficult

to articulate in non-numerical form. A certain amount of

interpretation on the side of the researchers is usually

involved when collecting data by observation, coded

survey or interview responses, and other techniques. To

help with the interpretation of their findings,

researchers may use a range of qualitative approaches

in a single study in addition to a theoretical or critical

framework [5].

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 796

3.1 THE CONCEPT OF OBJECT-ORIENTED

PROGRAMMING

A novel approach to using computers to solve issues is

object-oriented programming. The idea of an object

starts to gain traction around 1970 among computer

language researchers. According to [2], an object is a

set of code and data that is intended to mimic a real-

world or abstract entity. A programming approach

known as "object-oriented programming" links data

structures to a group of operators that perform

operations on them. An instance of such a thing is

referred to as an object in OOPs parlance. Relationships

between objects are prioritised over implementation

specifics. When implementation details are kept hidden

inside an object, the user becomes more focused on

how an item interacts with the system as a whole rather

than how the object is implemented [7].

The fundamental method of programming in object-

oriented programming languages is known as the

"Object Oriented Programming Paradigm." The four

key strengths of the paradigm are "abstraction,"

"encapsulation," "inheritance," and "polymorphism"

[14], These OOP characteristics are implemented in a

largely similar way by all OOP languages. OOP

programmes comprise a collection of relational classes

and objects, or data, that provide code flexibility and

reusability through inheritance and polymorphism,

respectively [20]. A large, complex project can be

broken into a number of relational classes in order to

achieve low production time and cost. This reduces the

complexity of the project operations and allows for the

effective management of large, complex projects in real

time. OOP makes it easier for consumers and

developers to conceal complex information [23].

Software is included in the "Classes" idea. The

foundation of all object-oriented programming (OOP) is

"Objects." Specifically, OOP focuses on modelling

classes and objects using "Objects."One of the key

ideas of object-oriented programming (OOP) is

"Message Passing," which refers to the use of all

project objects for message sending and receiving. OOP

programmes use data and code, which allows for code

reusability and stability, allowing for the quick

development of large, complicated projects [24].

A. Features of OOP

The following properties are defined by the Object

Oriented Programming System (OOPS). Any of the

following features could be implemented by any OOP

language, whether old and new [14]. Figure 2 presents

the features of OOP.

Figure 1: Features of OOP

(a) Classes

The foundation of any OOP programme is a class.

Classes are made up of both code (functions) and data

(variables). Classes protect the data and code from

unauthorised users' misuse and outside influence. Class

is a hypothetical concept that does not exist in reality

because it is a logical programming construct. A few

unique objects are present in every class of an OOP

programme and are used for "Message Passing."

Message passing refers to the ability of objects to

manipulate data and functions; in other words, objects

can send and receive messages from code (functions).

Message passing is among the core ideas of object-

oriented programming. Additionally, classes enable

other classes to derive their variables and functions,

paving the way for hierarchical abstractions, which

designate which class or classes should execute first.

Features of
OOP

Classes

Objects

Encapsulation

Inheritance

Polymorphism

Abstraction

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 797

The fundamental component of implementing OOP

concepts is the classroom [6].

(b) Objects

The core component of every OOP programme is its

objects. An object's behaviour, data, and state

(attributes) together define its functionality. An instance

of a class is called an object. In contrast to classes,

objects are actual physical entities that exist in the real

world. An employee could have attributes like name,

department, pay, and empno, for instance. as well as

their actions when they work, take time off, etc. An

employee is an item in this sense, with certain

characteristics and behaviours. Items may contain

confidential information that should only be viewed by

those with permission. Unauthorised individuals should

not have access to sensitive information. Many OOP

languages have access specifier mechanisms that can be

used to restrict data access. "Message Passing" is

another crucial feature of objects. It indicates that

messages from functions can be sent and received by

the objects [16].

(c) Encapsulation

One of the fundamental ideas of OOP is encapsulation.

A method of connecting code (functions) and data

(variables) is called encapsulation. The fundamental

unit of encapsulation in the object-oriented

programming paradigm is the class, which is the

fundamental unit of a programme. Data and code are

bound together by a class, which also shields them from

outside interference and unauthorised use.

Encapsulation, also known as information hiding, is

frequently used to shield a class's internal state from

outside interference. By doing so, we may regulate

access to the internal state of class instances while

simultaneously concealing confidential information.

Encapsulation will make it easier to demonstrate the

relationships between the data and class methods in

integration by ensuring their completeness and

integrity.

(d) Inheritance

One key idea in OOP is inheritance, which allows one

class to inherit the characteristics of another class.

Stated otherwise, a class has the ability to inherit the

characteristics and actions of another class. Functions

and attributes from the base class (parent class) will be

derived into the derived class (child class) via

inheritance. The primary purpose of inheritance is to

enable code reuse. By giving a derived class, or child

class, access to its base class's properties and functions,

inheritance reduces execution time and minimises

errors. Utilising the qualities and capabilities again

Make programming simple and allow users to reuse

code from our current class in our new Derived class

with great ease. There is a "is-a" connection between

inheritance and derived classes. A class can also inherit

its properties and functionalities from many classes by

using inheritance. The other inheriting classes will work

differently if modifications are made to the inherited

classes [8].

(e) Polymorphism

Polymorphism is another crucial OOP concept. Users

can more easily create a shared interface for a

collection of related activities when polymorphism is

used. Put differently, polymorphism permits the

definition of a single Name (object) and several forms

(functions). A function can be implemented differently

in base classes and derived classes and take on different

forms thanks to polymorphism. Due to code

simplification, OOP programmes that implement

polymorphism will run quickly. For instance, in OOP

languages, implementing a stack data structure requires

the creation of a single common interface (object),

which can be applied to a variety of forms and data

kinds. In non-OOP languages, however, this is not

feasible [8].

(f) Abstraction

Above all other aspects of OOP is abstraction. Users

can control an object's complexity thanks to abstraction.

Abstraction conceals from the outside world the

specifics of an object's implementation, concentrating

instead on the essentials of the item. Additionally, it

enables users to interact with those intricate object

components through their interfaces. For instance, let's

say that "Car" As an object, a car merely displays

interfaces such as steering, breaking, and lighting to the

user (driver), hiding all other sophisticated operations.

Put another way, an automobile item grants the user

access to the interfaces of its complicated parts while

concealing from them the functionality of those

elements. The distinction between encapsulation and

abstraction is that the former focuses only on the

pertinent details of the object and conceals from the

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 798

user any superfluous complexity, while the latter binds

and conceals the data and functions into a single unit,

enveloping it in a protective layer that guards against

unauthorised access [11].

3.2 Programming Languages for the

Implementation of OOP

Programming languages that are object-oriented have a

long history dating back to the 1960s. Little Talk,

Simula 67, and Simula are the original OOP languages.

Simula 67 served as the model for the development of

Small Talk. However, Small Talk is more widely

recognised as a completely OOP language, meaning

that everything in Small Talk is an object. Later, C++

developed into an OOP language in the 1980s. Basic

programming constructs from the C language are

included in C++. For this reason, C++ was once known

as "C with Classes." The 1990s saw the beginning of

the Golden Age of Object-Oriented Programming

languages. One aspect of OOP languages that has

evolved in the software industry is the Java language,

which was invented in 1995.It's because Java

Language's programming constructs are both powerful

and easy. Then, on the OOP stage, Ruby and C# have

become major roles [4].

Java is now a well-known multi-paradigm

programming language, at last. Java is quite popular

due of its adequate implementation of OOP elements

and its simplicity. The purpose of Java development is

to satisfy real-world software needs. Some or all of the

features of object-oriented programming are

implemented by each of these programming languages.

For instance, because everything in small talk is an

object, practically all OOP characteristics are

implemented in small talk [8]

3.3 A REVIEW OF JAVA PROGRAMMING

LANGUAGE

James Gosling created the Java programming language

in 1995. Java is a class-based, object-oriented, high-

level programming language that has gained a lot of

popularity. It is intended to activate the "Write Once,

Run Anywhere" (WORA) function, which permits Java

code that has been built to run on any platform that

supports Java without the need for additional

compilation [12]. Java is a popular choice for

developing a wide range of programmes, including

mobile apps, web apps, desktop apps, and games. It is

noted for its simplicity, portability, and platform

independence. Because Java is turned into bytecode,

which can operate on any platform that supports the

Java Virtual Machine (JVM), one of its primary features

is its platform freedom. This eliminates the need for

developers to worry about platform-specific details and

allows them to create code once and run it on any

platform [9]. Furthermore, a lot of businesses and

academic institutions utilise Java, and it is essential for

many business applications.

A. Features of Java Programming Language

Programming languages like Java are popular because

of their reputation for performance, platform freedom,

and security. Java is a programming language for

computers that may be used for many different things,

including games, desktop computing, back-end and

android development, and numerical computing [3].

The main characteristics of the Java programming

language are covered in this essay. Among the attributes

of programming languages in Java are:

i. Object Oriented: In Java, everything is shown as

an object. Software can be organised by anyone

through the combination of many entity types that

include data and functions. Because Java

incorporates OOP, it is now widely used in the

creation of complex software systems, especially

in enterprise settings where scalability and

modularity are important factors.

ii. Simple: Because of its clear, basic, and

understandable syntax, Java is a very

straightforward language to learn. Sun Micro

system claims that because the syntax is derived

from C++, developers with knowledge of C++ or

related languages will find it easy to use.

Additionally, it comes with a vast library of pre-

built classes and methods that offer many common

functions required by developers while creating

applications. Another reason it is regarded as a

simple language is its platform independence,

which allows programmers to create code once

and have it execute on any machine that supports

Java. Generally speaking, Java's ease of use makes

it a popular option for both novice and seasoned

developers, which helps to explain the language's

popularity and wide acceptance.

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 799

iii. Secured: Given that it created a virus-free system

with no explicit pointers and virtual machine box

operation, Java is most recognised for its security.

Furthermore, Java features a class loader that

isolates the class package from both the local file

system and imported network sources, hence

enhancing security. The security manager

determines what local disc resources a class can

use, while the bytecode validator checks code

fragments for any illegal code to guarantee secure

access to the right objects.

iv. Platform Independent: Because it relies on

software-based technologies to function atop

hardware-based platforms, the Java platform

stands out from other platforms. There are two

parts to the platform: The class libraries and other

resources required to run a specific Java

programme are provided by the runtime

environment, which operates on top of the

computer's operating system software. – An easily

accessible method of extracting and sharing data

within and between organisations is through APIs

(Application Programming Interfaces).

v. Robust: Java's effective memory management

system makes it a programming language that is

regarded as resilient and safe. The absence of

pointers in this technique reduces security

vulnerabilities, which is one of its advantages. It

also uses the Java Virtual Machine for automatic

garbage collection, which removes unused objects

from a Java application. These all contribute to

Java's strength.

vi. High-Performance: Java is becoming more and

more popular for High-Performance Computing

(HPC) because of its attractive features for multi-

core cluster architecture programming,

particularly its support for multithreading and

built-in networking. Furthermore, the Java Virtual

Machine (JVM) has become even more appealing

in this context due to its continuous performance

improvement.

3.4 STRENGTHS ATTRIBUTED TO JAVA’S OOP

IMPLEMENTATION

The Java programming language has all the capabilities

required to be used as an Object-Oriented programming

paradigm, as section 5 illustrates. Its merits include the

following, which make it suitable for OOP

implementation: Figure 3 presents the strength of OOP.

Figure 3: Strength of Java OOP

a. Platform Independence

OOP features in Java help to considerably support the

"write once, run anywhere" idea. Encapsulation,

inheritance, and polymorphism are three techniques that

facilitate the creation of modular code that is readily

portable between platforms.

b. Robustness and Security

Encapsulation protects data integrity and stops

unwanted access, which improves the security and

resilience of Java applications. Java's OOP model

integrates seamlessly with its exception handling

features, which further aid in the development of robust

programmes.

c. Readability and Maintainability

Because Java strictly adheres to OOP concepts, the

code is easier to read and maintain. Large codebases are

easier to manage and update thanks to features like

inheritance and polymorphism, which reduce code

redundancy.

d. Scalability and Extensibility

Java's OOP features, including polymorphism and

abstraction, make it easier to create scalable and

expandable programmes. Large systems can evolve

over time by adding new functionality with little to no

changes to the old code.

Java's implementation of OOP concepts offers a strong

base upon which to construct scalable, maintainable,

and reliable programmes. Although it has many

advantages, like flexibility, modularity, and code reuse,

Platform Independence

Robustness and Security

Readability and
Maintainability

Scalability and Extensibility

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 800

it also has drawbacks in terms of complexity and

performance. It is essential to comprehend these

characteristics and their ramifications in order to use

Java in software development efficiently.

4. CONCLUSION

This paper highlights the benefits and drawbacks of

implementing Java's Object-Oriented Programming

(OOP) capabilities through a rigorous analysis. Java's

capacity to create reliable, scalable, and maintainable

programmes is highlighted by its adherence to

fundamental OOP concepts like encapsulation,

inheritance, polymorphism, and abstraction. The

language's reputation as a dependable and adaptable

tool for a variety of applications, from enterprise-level

systems to mobile apps, is largely due to these qualities,

each of which has substantial benefits.

Java encapsulation facilitates the creation of well-

structured, error-resistant programmes that are easier to

maintain, hence promoting modularity and data

security. It may, however, also result in development

overhead and limit flexibility in situations involving

rapid development. Because inheritance follows the

DRY (Don't Repeat Yourself) concept, it makes code

reusability easier and speeds up the development

process. Still, it can lead to highly connected systems

that are more difficult to manage and prone to problems

such as the fragile base class problem.

Because polymorphism makes code more extensible

and flexible, it facilitates the simpler integration of new

features and allows for more generic processing of

objects. However, because method dispatch is dynamic,

it might cause performance cost and make debugging

more difficult. Abstraction facilitates the definition of

unambiguous interfaces and encourages a high degree

of modularity, which makes systems simpler to

comprehend and alter. However, in large systems, it can

also result in a lot of boilerplate code and add

complexity.

Because of its effective use of these OOP concepts,

Java is a popular choice among developers globally due

to its usefulness. The language's attractiveness is further

enhanced by its support for platform independence.

Java's OOP characteristics are not without drawbacks,

despite these benefits. Notable concerns include the

performance overhead related to features like dynamic

method dispatch and the complexity brought about by

large abstraction layers and deep inheritance

hierarchies. These difficulties demand considerable

thought to be taken into account in the design and

development stages in order to guarantee that the

advantages of OOP are optimised without suffering

major shortcomings.

To sum up, Java's implementation of OOP features

offers a strong base for creating software that is

reliable, manageable, and scalable. Through the proper

use of encapsulation, inheritance, polymorphism, and

abstraction, developers may design robust and versatile

systems. Even with these obstacles, software solutions

can be extremely successful if these functionalities are

well understood and used sparingly. In order to get the

best possible software design and performance, this

study emphasises how crucial it is to apply OOP

principles in Java in a balanced and careful manner.

5. AUTHOR’S BIOGRAPH

Kekong Pius Ekwo is a Lecturer in the

Department of Computer Science at the

Federal University of Health Sciences,

Otukpo, Benue State, Nigeria. He is a

registered member of the Computer

Professionals Registration Council of Nigeria

(CPN). His areas of academic and research

interest include artificial intelligence,

cybersecurity, adaptive control systems, and

embedded systems. He has authored and co-

authored several peer-reviewed publications in

national and international journals. He is

currently pursuing his Ph.D. in Computer

Science at Ebonyi State University, Abakaliki,

Nigeria, where his research focuses on the

application of neural networks in satellite

attitude control and intelligent systems design.

Ekpo Michael Ernest is a doctoral student in

the Department of Computer Science at

Ebonyi State University, Abakaliki, Nigeria.

His research interests span across machine

learning, cyber security, intelligent decision

support systems, and data-driven risk

assessment techniques. He has contributed to

academic research in adaptive learning

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 801

systems and is actively involved in

collaborative projects focused on the use of AI

in enhancing security and control systems in

health technology.

Adams is currently pursuing his Ph.D. in

Computer Science at Nasarawa State

University, Keffi, Nigeria. His research

explores advanced topics in artificial

intelligence, software engineering, and

Internet of Things (IoT) applications for smart

systems. He is particularly interested in the

integration of AI-driven models for real-time

monitoring, automation, and security

enhancement. He has participated in national

academic workshops and is involved in

ongoing research on intelligent system control

for autonomous platforms.

6. REFERENCES

1) Abbasi S., Kazi H., Kazi A., Khowaja K., &

Baloch A., (2021) Gauge Object Oriented

Programming in Student’s Learning Performance,

Normalized Learning Gains and Perceived

Motivation with Serious Games. Information 2021,

12, 101. https://doi.org/10.3390/info12030101

2) Bhusari, C. S., Vaz, S. A., &Angne, S. (2019).

Concepts of object-oriented programming.

International Journal of Scientific Research, 8*(6),

1-4. https://doi.org/10.56726/IRJMETS31010

3) Deepali (2023) Features of Java Programming

Language. https://www.interview-

bit.com/blog/features-of-java/

4) Elliott E., (2023) “The Future of Programming: AI

and Interface-Oriented Languages”, written by

Javascript Scene

5) Fulton Library (2024) Research Methodologies.

Qualitative Research Methodologies - Research

Methodologies - Research Guides at Utah Valley

University (libguides.com) Accessed June 2024

6) Geek for geeks (2024) Object oriented

programming in C++. Object Oriented

Programming in C++ - GeeksforGeeks Accessed

June 2024

7) Ghodke, R. B., & Gaikwad, G. D. (2023). Basic

concept of object-oriented programming (OOP).

International Research Journal of Modernization in

Engineering Technology and Science, 5*(9), 1-6.

https://doi.org/10.56726/IRJMETS31010

8) Gillis A.S. & Lewis S., (2021) “What is object-

oriented programming”, Technical Writer and

Editor, techtarget 2021

9) Hachadi, Z., (2023) Java Web Development

Springboot Security.. (LinkedIn,2023),

https://tn.linkedin.com/posts/zakaria-hachadi-

176b871b0java − webdevelopment − springboot −

activity − 7047332925712785408 − x4Y 0

10) Kumar S., & Sankar P., (2021) Object Oriented

Programming (Java). No. 11, Veerabathra Nagar,

Part II, 8th Street, Medavakkam, Chennai – 600

100, Tamil Nadu, India.

11) Lakshmanamoorthy R., (2021) “Object-Oriented

Programming with Python”, Analytics India

Magazine.

12) Martinez D., Remegio A., &Lincopinis D., (2023)

A Review on Java Programming Language.

https://www.researchgate.net/?enrichId=rgreq-

075590a898a9eaee62ebf0b14dbdaee2-

XXX&enrichSource=Y292ZXJQYWdlOzM3MTE

2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3M

kAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publi

cationCoverPdf

13) Martinez D., Remegio H., &Lincopinis D., (2023)

A Review on Java Programming Language.

Western Mindanao State University

https://www.researchgate.net/?enrichId=rgreq-

075590a898a9eaee62ebf0b14dbdaee2-

XXX&enrichSource=Y292ZXJQYWdlOzM3MTE

2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3M

kAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publi

cationCoverPdf

14) Nagineni R., (2021) A Research on Object Oriented

Programming and Its Concepts. esh Babu

Nagineni, International Journal of Advanced

Trends in Computer Science and Engineering,

10(2), March - April 2021, 746 – 749

https://doi.org/10.30534/ijatcse/2021/401022021

15) Nagineni, R. B. (2021). A research on object-

oriented programming and its concepts.

International Journal of Advanced Trends in

Computer Science and Engineering, 10*(2), 1-10.

https://doi.org/10.30534/ijatcse/2021/401022021

16) Nzerue-Kenneth P.E., Onu F.U., Denis A.U., Igwe

J.S., Ogbu N.H. (2023), Detailed Study of the

Object-Oriented Programming (OOP) Features in

Python. British Journal of Computer, Networking

and Information Technology 6(1), 83-93. DOI:

10.52589/BJCNITFACSOJAO

17) Palanciuc D., & Pop F., (2021) Implementing

Replication of Objects in DOORS—The Object-

Oriented Runtime System for Edge Computing.

Sensors 2021, 21, 7883.

https://doi.org/10.3390/s21237883

18) Parmar M., & Parmar S., (2024) Survey on

Concept of Object-Oriented Programming.

https://doi.org/10.3390/info12030101
https://doi.org/10.56726/IRJMETS31010
https://www.interview-bit.com/blog/features-of-java/
https://www.interview-bit.com/blog/features-of-java/
https://uvu.libguides.com/methods/qualitative
https://uvu.libguides.com/methods/qualitative
https://uvu.libguides.com/methods/qualitative
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/
https://www.geeksforgeeks.org/object-oriented-programming-in-cpp/
https://doi.org/10.56726/IRJMETS31010
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-075590a898a9eaee62ebf0b14dbdaee2-XXX&enrichSource=Y292ZXJQYWdlOzM3MTE2Njc0NDtBUzoxMTQzMTI4MTE2MzE2MzU3MkAxNjg1NTIxOTc3MzM0&el=1_x_1&_esc=publicationCoverPdf
https://doi.org/10.30534/ijatcse/2021/401022021
https://doi.org/10.30534/ijatcse/2021/401022021
https://doi.org/10.3390/s21237883

International Journal of Real-Time Applications and Computing Systems (IJORTACS)

Corresponding Author Tel: +234 808 521 1771 802

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology.

https://doi.org/10.32628/CSEIT243647

19) Perrelli M., Cosco F., Carbone G., Lenzo B., &

Mundo D., (2021) On the Benefits of Using

Object-Oriented Programming for the Objective

Evaluation of Vehicle Dynamic Performance in

Concurrent Simulations. Machines 2021, 9, 41.

https://doi.org/10.3390/machines9020041

20) Radha G., & Gaytri G., (2023) Basic Concept Of

Object-Oriented Programming (OOP).

International Research Journal of Modernization in

Engineering Technology and Science.

https://www.doi.org/10.56726/IRJMETS31010

21) Rau R., (2020) “Object-oriented programming

(OOP)”. International Research Journal of

Engineering and Technology (IRJET)

22) Raut, R. S. (2020). Research paper on object-

oriented programming (OOP). *International

Research Journal of Engineering and Technology,

7*(10), 1-8. https://www.irjet.net

23) Sofronas D., Margounakis D., Rigou M.,

Tambouris E., &Pachidis T., (2023) SQMetrics: An

Educational Software Quality Assessment Tool for

Java. Knowledge 2023, 3, 557–599.

https://doi.org/10.3390/knowledge3040036

24) StudySmarter (2024) Inheritance in OOPs.

Inheritance in Oops: Advantages, Types,

Importance (studysmarter.co.uk) Accessed June

2024

25) Surya, M., & Padmavathi, S. (2019). A survey of

object-oriented programming languages.

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology, 5*(2), 1-12.

https://doi.org/10.32628/CSEIT195248

26) Vamanmehtre, V., & Bhalla, A. (2019). Analysis of

object-oriented programming. *IRE Journals,

3*(6), 1-6. https://doi.org/10.2456-8880

https://doi.org/10.32628/CSEIT243647
https://doi.org/10.3390/machines9020041
https://www.doi.org/10.56726/IRJMETS31010
https://www.irjet.net/
https://doi.org/10.3390/knowledge3040036
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/inheritance-in-oops/
https://www.studysmarter.co.uk/explanations/computer-science/computer-programming/inheritance-in-oops/
https://doi.org/10.32628/CSEIT195248

	2. LITERATURE REVIEW
	3. RESEARCH METHODOLOGY
	3.1 THE CONCEPT OF OBJECT-ORIENTED PROGRAMMING
	3.2 Programming Languages for the Implementation of OOP
	3.3 A REVIEW OF JAVA PROGRAMMING LANGUAGE
	3.4 STRENGTHS ATTRIBUTED TO JAVA’S OOP IMPLEMENTATION

	4. CONCLUSION
	5. AUTHOR’S BIOGRAPH
	6. REFERENCES

