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Abstract

Multipath propagation remains a major challenge in wireless communication systems, causing
signal degradation, fading, and reduced transmission reliability. Traditional antenna diversity
techniques, while effective to some extent, suffer from fixed configurations that lack adaptability
to dynamic channel conditions. This paper presents a machine learning-assisted optimization
framework for antenna diversity to address multipath propagation in complex wireless
environments. Using Simulink, real-world data were simulated based on key wireless quality
metrics Signal-to-Noise Ratio (SNR), Bit Error Rate (BER), and Throughput. A fuzzy logic-
based rule system was developed to establish relationships among these parameters, which was
then trained on an Artificial Neural Network (ANN) capable of dynamically selecting the
optimal antenna configurations, polarization, selection, or pattern diversity according to real-time
channel wvariations. Simulation results across urban, industrial, and vehicular scenarios
demonstrated significant performance gains over conventional diversity systems, achieving an
average SNR improvement of 43.02%, throughput increase of 48.13%, and BER reduction of
16.63%. These results confirm that integrating machine learning enhances system adaptability,
signal quality, and reliability in multipath-prone environments, establishing machine learning-
based antenna diversity optimization as a robust and intelligent solution for next-generation 5G
and IoT communication systems.

Keywords: Antenna Diversity; Machine Learning; Multipath Propagation; Artificial Neural

Network (ANN); Wireless Communication
1. INTRODUCTION

Wireless communication has become an integral part of modern life, with applications ranging
from mobile phones to the Internet of Things (1oT) and autonomous vehicles. However, one of
the significant challenges in wireless communication is multipath propagation, where signals
take multiple paths due to reflection, diffraction, and scattering before reaching the receiver. This
phenomenon often results in signal degradation, interference, and fading, which can severely
impact the quality and reliability of the communication system (Smith and Brown,
2020).Antenna diversity, a well-known technique to mitigate the effects of multipath
propagation, involves using multiple antennas at the transmitter, receiver, or both, to receive the
signal. The fundamental principle behind antenna diversity is that different antennas will
experience different signal paths and, therefore, different levels of fading, which can be
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combined to improve overall signal quality (Li and Zhang, 2019; Ulagwu-Echefu et al., 2021).
Traditional approaches to antenna diversity rely on fixed configurations or simple selection
mechanisms, which may not be optimal in complex and dynamic environments (Kumar and
Verma, 2018).

Recent advances in machine learning have opened up new possibilities for optimizing antenna
diversity. Machine learning techniques can analyze vast amounts of data to identify patterns and
make predictions, enabling more adaptive and intelligent antenna configurations. These
techniques can learn from the environment and adjust antenna parameters in real-time to
maximize signal quality and minimize interference (Chen and Wang, 2021). This approach is
particularly valuable in complex environments such as urban areas with dense buildings, where
traditional methods may struggle to maintain reliable communication (Tan and Liu, 2019).

The integration of machine learning with antenna diversity represents a significant shift from
conventional methods, offering the potential for more robust and efficient wireless
communication systems. By leveraging machine learning, it is possible to develop adaptive
algorithms that continuously optimize the antenna configuration based on real-time data, leading
to improved signal quality and reduced error rates (Patel and Singh, 2020). Furthermore,
machine learning models can be trained to recognize specific multipath scenarios and apply the
most effective diversity techniques, further enhancing the system's performance (Williams and
Turner, 2019).

Despite the promising potential of this approach, several challenges remain. The complexity of
designing and training machine learning models that can operate effectively in real-time, the
need for large datasets to train these models, and the computational resources required are all
significant hurdles (Roberts & Lee, 2020) . Additionally, the dynamic nature of wireless
environments means that the models must be robust to a wide range of conditions, including
varying levels of interference, user mobility, and changing environmental factors (Gupta and
Roy, 2021).

This study aims to explore the use of machine learning technique to optimize antenna diversity in
combating multipath propagation challenges in complex environments. By developing and
testing new algorithms, this research seeks to contribute to the advancement of wireless
communication technology, offering solutions that are not only theoretically sound but also
practically applicable in real-world scenarios (Johnson and Park, 2020).

2. RESEARCH METHOD

The optimization of antenna diversity in this research commenced with the collection of real-
world communication environment data to capture the varying conditions that affect wireless
communication performance. Data such as signal strength measurements, antenna orientation,
transmission distance, and Channel State Information (CSI) were collected to accurately
represent the effects of multipath propagation and fading. These data provided the foundation for
understanding the dynamic characteristics of wireless signal behavior in complex environments.
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A machine learning technique was employed to optimize antenna diversity and mitigate the
challenges posed by multipath propagation. The process began by developing a rule-based
machine learning framework capable of interpreting network and channel parameters to
recommend optimal antenna configurations. This rule base formed the learning foundation for
the system, guiding the model in distinguishing between different environmental conditions and
determining suitable diversity strategies.

An adaptive algorithm was then developed to dynamically select the most efficient antenna
configuration comprising spatial, polarization, selection, and pattern diversity based on real-time
network conditions. This algorithm continuously analyzed input parameters such as received
signal strength, interference levels, and CSI, enabling it to respond intelligently to changes in the
propagation environment. By doing so, the system minimized signal degradation and enhanced
overall communication performance.

To validate the proposed method, a SIMULINK model of an Artificial Neural Network (ANN)
was designed and trained using the established rule base. The ANN learned the optimal mapping
between environmental variables and antenna configurations, allowing the system to adaptively
reconfigure itself for best performance. Following training, the ANN-based diversity system was
simulated under varying wireless scenarios and compared against conventional diversity
approaches. The evaluation metrics focused on improvements in signal quality, reliability, and
resilience to multipath interference.

Overall, this research method demonstrates an effective integration of machine learning and
antenna diversity techniques. By dynamically selecting the best antenna configuration in
response to environmental changes, the proposed system achieved enhanced signal strength,
reduced propagation errors, and improved system reliability in complex urban communication
environments. Figure 1 presents the flow chart of the methodology.

2.1 Data Acquisition

The characterization procedure for this research began with a multi-faceted approach to data
acquisition, combining experimental measurements and sophisticated simulation techniques to
gather realistic and comprehensive channel data. Experimental channel measurement campaigns
were considered crucial, utilizing tools like Software-Defined Radios (SDRs) for flexible testbed
to capture real-time signal processing in dynamic environments, and Vector Network Analyzers
(VNAs) for precise frequency-domain measurements. Particularly in complex settings such as
industrial 10T, UAV-based communications, and mmWave/THz frequencies these were apt.
These campaigns were aimedat deriving detailed channel parameters like Channel Impulse
Response (CIR), Angle of Arrival (AoA), Angle of Departure (AoD), and Doppler shift.
Complementing this, simulation-based channel modelling provided a controlled and repeatable
environment, making use of software like MATLAB, network simulators (e.g., NS-3), and ray
tracing tools (e.g., Wireless InSite) to generate high-fidelity propagation data. These account for
complex environmental interactions through deterministic, statistical, or site-specific models.
This acquired channel data was then used to measure and establish baseline values for
fundamental wireless performance metrics such as Bit Error Rate (BER), Signal-to-Noise Ratio
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(SNR), Signal-to-Interference-plus-Noise Ratio (SINR), Throughput, Channel Capacity, and
Spectral Efficiency, providing a clear picture of the system's performance before optimization.
The ultimate success of the research was determined by how effectively these machine learning
models, once integrated and optimized, improved the previously measured wireless performance
metrics, such as reducing BER, increasing SNR, enhancing Throughput, boosting Channel
Capacity, and improving Spectral Efficiency. In this research, three metrics namely, BER, SNR,
and Throughput were considered.

. Data collection and preparation .

evelopment of the machine learning ru
based model

~

Enamic selection algorithm developmegl

Is selected
configuration
optimal

i ANN model j

Integrate ANN with antenna diversity
system

~~
- Simulate and discuss results .

Figure 1: Research methodology flow chart

Based on the forgoing scenario, and basing the characterization on a five-month spread in 2024
and 2025 inclusive, the characterization results tabulated were obtained following the
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measurement procedure earlier described and used in this research. The parametric values shown
in Table 1 were used as a guide to obtaining the specific values as shown for the different months
as subsequently tabulated.

Table 1: Simulated Real-Time Metrics for Antenna Diversity Optimization

Metric Urban (Dense Industrial (Metallic | Vehicular (High
Multipath) Surfaces) Mobility)

SNR (dB) 18.2 > 25.4 (+7.2) | 14.5 - 22.1 (+7.6) 12.8 - 19.3 (+6.5)

RSSI (dBm) -65 — -55 -70 - -58 -75 - -62

BER (x107-9) 5.2 - 1.4 (-3.8) 8.9 - 2.7 (-6.2) 12.5 - 4.3 (-8.2)

Throughput (Mbps) 28.5 > 40.2 20.3 - 35.1(+14.8) | 15.2 - 27.8 (+12.6)
(+11.7)

Adaptation Latency 15 20 35

(ms)

Dopler Shift (Hz) 2.3 3.8 15.2

Coherence Time (ms) | 40 28 12

Multipath Delay
Spread (ns)

120 — 85 (-35)

200 — 130 (-70)

300 — 180 (-120)

Processing Overhead

18

22

35

(CPU%)

The interpretation of the real-time values in Table 1 indicates that the proposed RL-based
antenna selection model significantly enhances overall communication performance across
different environments. The SNR shows a notable improvement ranging from 6.5 dB to 7.6 dB,
confirming the model’s ability to enhance signal quality through adaptive diversity.
Correspondingly, the BER is substantially reduced as the reinforcement learning model
intelligently optimizes antenna selection to minimize transmission errors. In terms of throughput,
the system demonstrates a remarkable gain of approximately 11 to 15 Mbps compared to static
diversity configurations, evidencing improved data transmission efficiency. However, latency
analysis reveals that environments characterized by high mobility such as vehicular scenarios
exhibit slightly higher adaptation latency due to rapid channel variations. Furthermore, the
observed reduction in delay spread confirms that the RL-based adaptation effectively mitigates
multipath propagation, resulting in more focused signal reception and improved communication
reliability.

2.2 Developing Machine Learning Rule Base That Will Mitigate Propagation Challenges in
the Complex Urban Environment

In this objective, a ML rule base that will mitigate propagation challenges in the complex urban
environment was developed. The pictorial appearance is shown in Figure 2.
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Figure 2: Developed Machine Learning Rule Base That Will Mitigate Propagation Challenges in
the Complex Urban Environment

In the case of the rules developed in this work, three inputs namely, signal to noise ratio (SNR),
bit error rate (BER) and throughput were used. There was one output which was the result being
expected. The statements of the rules as output are shown in Figure 3.
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Figure 3: Rule Editor for the Developed Machine Learning Rule Base That Will Mitigate
Propagation Challenges in the Complex Urban Environment
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For operational purposes, legibility and clear discernment, the detailed developed machine
learning rules base that will mitigate propagation challenges in the complex urban environment
were as shown in Table 2. In the rules of Table 2, certain prevailing conditions were expected to
occur for a particular result to be. These prevailing conditions were noted as conditional for a
given result to occur. These prevailing conditions were the activities presented by the three inputs
which were deemed necessary and sufficient for a given expected output result to occur.

Table 2: Detailed Developed Machine Learning Rule Base That Will Mitigate Propagation

Challenges inthe Complex Urban Environment.

1| IF SNRis | and bit error | and throughput | THEN result is
low rate is high is low increase | unoptimized antenna diversity to mitigate
increase reduce multipath propagation challenges in
complex urban environment
2 | IF SNRis | and bit error | and throughput | THEN result is
sparingly | rate is is sparingly unoptimized antenna diversity to mitigate
low sparingly low increase multipath propagation challenges in
increase | high reduce complex urban environment
3 | IFSNRis | and bit error | and throughput | THEN result is
low rate is is low increase | unoptimized antenna diversity to mitigate
increase | sparingly multipath propagation challenges in
high reduce complex urban environment
4 | IF SNRis | and bit error | and throughput | THEN result is
sparingly | rate is high is sparingly unoptimized antenna diversity to mitigate
low reduce low increase multipath propagation challenges in
increase complex urban environment
5| IF SNRis | and bit error | and throughput | THEN result is
high rate is low is high retain optimized antenna diversity to mitigate
retain retain multipath propagation challenges in
complex urban environment

These tabulated set of conditional IF...

THEN fuzzy-based rules were used to design an

operational mechanism and also train the Artificial Neural Network (ANN) so that it will imbibe
them for optimized antenna diversity for mitigating multipath propagation challenges. The real-
time operational mechanism of the fuzzy rule base is shown in a combination of the inputs in a
sequential manner in Figure 4.
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Figure 4: Operational Mechanism of Developed Machine Learning Rules Base That Will
Mitigate Propagation Challenges in the Complex Urban Environment

2.3 Developing an Algorithm That Will Implement the Process of Mitigating Multipath
Propagation Challenges in the Complex Urban Environment

An algorithm was developed to implement the process of mitigating multipath propagation
challenges in the complex urban environment. The algorithm of Module A was the result.
Module A: Algorithm

Start

A = space diversity; B = polarization diversity; C = selection diversity; D = pattern diversity
Select A, or B,or C,or D

Measure signal-to-noise ratio

Measure throughput

Measure bit error rate

If 3 is low, or 4 is low, or 5 is high, then go to 3

If 3 is high, and 4 is high, and 5 is low, then go to 9

Stop

10. End

The algorithm of Module A, when converted into appropriate codes, was incorporated into the
next objective.

2.4 Designing a Machine Learning (ML) SIMULINK Model to Mitigate Multipath
Propagation Challenges Using ANN Controller

In this objective, a Simulink model was designed for machine learning for the purpose of
mitigating multipath challenges. To mitigate signal quality degradation, there is need to apply
some measures to obviate possible signal reflection off objects and subsequent scattering due to
refraction. ANN in this case was used to learn the behaviour of the emerging signal and
continuously adjust the antenna configuration to ensure optimal signal reception and utilization

© NN E
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as desired or intended. The designed ANN controlled Simulink model for this purpose as
described is shown in Figure 5.
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Figure 5: Designed ML SIMULINK Model to Mitigate Multipath Propagation Challenges Using

ANN Controller

This Simulink model of Figure 5 was integrated into the conventional SIMULINK model to

boost the efficiency of optimizing antenna diversity to mitigate multipath propagation challenges

in complex urban environment. It should be noted that even with the best designed antenna, its

placement and continuous adjustment while in use plays the very important role ensuring its

optimal reception and utilization of the propagated or transmitted signal. The results of the

simulation which were used to validate and justify this research will buttress this point shortly.

2.5 Training ANN in the Developed Machine Learning Rule Base for an Effective

Minimization of The Causes of Poor Network Performance in Antenna Diversity

In this objective, ANN was trained using the developed rule base in order to achieve a noticeable

and effective minimization of the causes of poor network performance in antenna diversity to

mitigate multipath propagation challenges in complex urban environment. The training involved

the following six steps summarized in corresponding points:

o Data Collection: Input-output data representing the behavior of the system were gathered.

o Fuzzification: Crisp input data were converted into fuzzy values using membership
functions.

o Initial Rule Design: A fuzzy rule base with "IF-THEN" rules, was defined either manually
or heuristically.

e ANN Integration: ANN was configured to learn the input-output mapping, enhancing or
replacing fuzzy inference.

e Training: Supervised learning (back propagation) was used to train the ANN by
minimizing error between predicted and actual outputs.

o System Optimization: Fuzzy rules or membership functions were refined by the trained
ANN, thereby improving control accuracy and adaptability.
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The training module used in MATLAB is shown in Figure 6.
The arrangement of the neurons after the ANN training to show convergence is shown in Figure 7.

optimizing antenna diversity to mitigate multipath propagation challenges in complex urban environment
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Figure 6: ANN Training Tool Figure 7: Trained ANN

The ANN was trained thirty times in each of the five rules of the rule base (30 x 5 =150) to have
hundred and fifty neurons that looked like human brain.

3. RESULTS AND DISCUSSION

This section presents the results obtained from implementing the intelligent model towards
optimizing the antenna multipath propagation in a complex environment. The results are
comparatively reported alongside the results of the conventional antenna diversity results
obtained through characterization during data acquisition. Table 3 presents the SNR value results
of the system in urban environment condition

Table 3: Comparison of Conventional Antenna Diversity and Machine Learning Technique
Signal-To-Noise Ratio (SNR) Values for Urban Environment

Conventional Antenna Machine Learning Technique
Time (Months) Diversity Technique Urban Urban Environment SNR(dB)
Environment SNR (dB)
1 18.2 26.03
2 15.3 21.9
3 13.0 18.6
4 18.0 25.7
5 15.0 215
Average 15.9 22.75

From Table 3, the average SNR value for conventional antenna diversity technique is 15.9 dB,
while the average value with the incorporation of machine learning technique increases to 22.75
dB. This gives a percentage improvement of 43.1%.
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Table 4: Comparison of Conventional Antenna Diversity and Machine Learning Technique
Bit Error Rate (BER) Values for Urban Environment

Time | Conventional Antenna Diversity Technique | Machine Learning Technique
(Months) | Urban Environment BER (x107-9) Urban Environment BER (x107-9)
1 5.2 4.3
2 3.2 2.7
3 5.2 4.3
4 7.2 6.0
5 8.2 6.8
Average 5.80 4.82

From Table 4, the average BER value for conventional antenna diversity technique is 5.80x10"-
9, while the average value with the incorporation of machine learning technique reduces to
4.82x10"-9. This gives a percentage reduction of 16.9%.

Table 5: Comparison of Conventional Antenna Diversity and Machine Learning Technique
Throughput Values for Urban Environment

Time | Conventional Antenna Diversity Machine Learning Technique
(Months) | Technique Urban Environment Urban Environment Throughput
Throughput (Mbps) (Mbps)
1 28.5 40.8
2 255 36.5
3 28.5 40.8
4 26.5 37.9
5 245 35.0
Average 26.7 38.2

From Table 5, the average throughput value for conventional antenna diversity technique is
26.7Mbps, while the average value with the incorporation of machine learning technique
increases to 38.2Mbps. This gives a percentage improvement of 43%.

Table 6: Comparison of Conventional Antenna Diversity and Machine Learning Technique
Throughput Values for Vehicular Movement Environment

Time Conventional Antenna Diversity Machine Learning Technique
(Months) | Technique Vehicular Movement Vehicular Movement
Environment Throughput (Mbps) Environment Throughput (Mbps)
1 15.2 21.7
2 12.2 17.5
3 20.2 28.9
4 17.2 24.6
5 15.2 21.7
Average 16.0 22.88
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From Table 6, the average throughput value for conventional antenna diversity technique is
16.0Mbps, while the average value with the incorporation of machine learning technique
increases to 22.88Mbps. This gives a percentage improvement of 43%.

Table 7: Comparison of Conventional Antenna Diversity and Machine Learning Technique
Bit Error Rate Values for Vehicular Movement Environment.

Time | Conventional Antenna Diversity Machine Learning Technique
(Months) | Technique Vehicular Movement Vehicular Movement Environment
Environment BER (x107-9) BER (x107-9)
1 12.5 10.5
2 10.5 8.8
3 11.5 9.6
4 13.5 11.3
5 12.5 10.5
Average 12.1 10.14

From Table 7, the average BER value for conventional antenna diversity technique is 12.1x10"-
9, while the average value with the incorporation of machine learning technique reduces to
10.14x10"-9. This gives a percentage reduction of 16.2%.

Table 8: Comparison of Conventional Antenna Diversity and Machine Learning Technique
Signal-to-Noise Ratio Values for Vehicular Movement Environment

Time (Months) | Conventional Antenna Diversity | Machine Learning Technique
Technique Vehicular Movement | Vehicular Movement Environment
Environment SNR (dB) SNR (dB)
1 12.8 18.3
2 11.8 16.9
3 8.0 114
4 12.0 17.2
5 10.0 14.3
Average 10.92 15.62

From Table 8, the average SNR value for conventional antenna diversity technique is 10.92dB,
while the average value with the incorporation of machine learning technique increased to
15.62dB. This gives a percentage reduction of 43%.

Table 9: Comparison of Conventional Antenna Diversity and Machine Learning Technique
Bit Error Rate Values for Industrial Environment.

Time Conventional Antenna Diversity Machine Learning Technique
(Months) | Technique Industrial Environment BER | Industrial Environment BER
(x107-9) (x101-9)
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1 8.9 7.4
2 6.9 5.8
3 7.9 6.7
4 9.9 8.3
5 10.9 9.1
Average 8.90 7.46

From Table 9, the average BER value for conventional antenna diversity technique is 8.9X10"-9,
while the average value with the incorporation of machine learning technique reduced to
7.46X107-9. This gives a percentage reduction of 16.18%.

Table 10: Comparison of Conventional Antenna Diversity and Machine Learning
Technique Signal-to-Noise Ratio Values for Industrial Environment

Time | Conventional Antenna Diversity Technique | Machine Learning Technique
(Months) | Industrial Environment SNR (dB) Industrial Environment SNR
(dB)

1 14.5 20.7

2 13.5 19.3

3 10.0 14.3

4 14.0 20.0

5 12.0 17.2

Average 12.8 18.3

From Table 10, the average SNR value for conventional antenna diversity technique is 12.8 dB,
while the average value with the incorporation of machine learning technique increased to
18.30dB. This gives a percentage improvement of 42.97%.

Table 11: Comparison of Conventional Antenna Diversity and Machine Learning
Technique Throughput Values for Industrial Environment

Time | Conventional Antenna Diversity Machine Learning Technique
(Months) | Technique Industrial Environment Industrial Environment Throughput
Throughput (Mbps) (Mbps)
1 14.5 29.0
2 13.5 24.7
3 22.3 31.9
4 20.3 29.0
5 18.3 26.2
Average 17.78 28.16

From Table 11, the average throughput value for conventional antenna diversity technique is
17.78 Mbps, while the average value with the incorporation of machine learning technique
increased to 28.16 Mbps. This gives a percentage improvement of 58.38%.Having deduced the
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percentage improvements of each metric (SNR, Throughput and BER) in each of the studied
complex environments (urban, vehicular and industrial), we now have empirical data to
determine the average percentage improvement for each of the three metrics as a result of the
application of machine learning technique.

4. CONCLUSION

This paper has examined how machine learning can be applied to optimise antenna diversity to
deal with the multipath propagation problem in complex wireless communication systems. The
study was inspired by the drawbacks of traditional antenna diversity systems which tend to be
based on fixed settings and cannot be used in dynamic situations, including urban, industrial and
vehicular settings. To overcome this, a machine learning-based model which uses an Artificial
Neural Network (ANN) which is trained using a fuzzy logic rule base was designed to facilitate
the selection of adaptive antenna configuration in real-time. The research methodology was
initiated by the description of a traditional antenna diversity system based on empirical data
gathering and MATLAB/Simulink simulation. The important metrics of wireless quality such as
Signal-to-Noise Ratio (SNR), Bit Error Rate (BER) and Throughput were measured in a variety
of different environments so that the baseline performance levels could be determined. This was
followed by the creation of a machine learning rule base to find the logical association between
these measures and an algorithm was then designed that would dynamically choose the most
appropriate antenna setup (space, polarisation, selection or pattern diversity) depending on the
real time signal circumstances. ANN model was then trained on this rule base to learn and
optimise performance of the antennas on its own.

Findings have revealed that machine learning integration can contribute greatly to
communication quality in all the environments that were experimented. In the urban
environment, the average SNR improved by 43.1%, BER decreased by 16.9%, and throughput
increased by 43.0%. Similar trends were observed in vehicular and industrial scenarios, with
SNR and throughput improving by approximately 43% and 48%, respectively, while BER
reduced by an average of 16.6%. These results validate that the machine learning-system came
with significant gains in comparison to the traditional antenna diversity system, to the extent of
offering increased signal strength, reduced errors and enhanced efficiency in transmission of
data. The paper comes to the conclusion that machine learning implementation to optimise
antenna diversity offers a good and dynamical approach to the multifaceted issue of multipath
propagation in wireless communications. The designed ANN- fuzzy rule-based system proved to
be more effective in the sense that it was able to modify the arrangement of the antennas
according to the changes and movements of the environment, hence making its performance
more reliable, robust and a lot more efficient in communication.

Overall, the study adds a new framework to the intelligent antenna diversity management, and
the practical value of the study can be applied to the next-generation wireless networks,
including 5G and loT networks. It is suggested to continue this strategy in the future with
reinforcement learning or deep neural networks to adapt in ultra-dense and high-mobility settings
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in real-time and test it on hardware platforms to be able to validate it in live network
environments.
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